Math, asked by shania71, 10 months ago

(iii) x8-16y8
Find the answer

Answers

Answered by harendrachoubay
5

The value of x^{8} - 16y^{8} is

"(x^{4} + 4y^{4}) × (x^{2} + 2y)(x^{2} - 2y)".

Step-by-step explanation:

We have:

x^{8} - 16y^{8}

= (x^{4} )^{2} - (4y^{4}) ^{2}

= (x^{4} + 4y^{4}) × (x^{4} - 4y^{4})

[ Since, (a + b)(a - b) = a^{2} - b^{2} )

= (x^{4} + 4y^{4}) × ((x^{2}) ^{2} -(2y)^{2})

= (x^{4} + 4y^{4}) × (x^{2} + 2y)(x^{2} - 2y)

Hence, the value of x^{8} - 16y^{8} is

(x^{4} + 4y^{4}) × (x^{2} + 2y)(x^{2} - 2y).

Answered by riddhendubhattacharj
2

Answer:

x^8-16y^8

=(x^4)^2-(4y^4)^2

=(x^4+4y^4)(x^4-4y^4)

={(x^2+2y^2)^2-4x^y^2}{(x^2)^2-(2y^2)^2}

=(x^2+2y^2-2xy)(x^2+2y^2+2xy)(x^2+2y^2)(x^2-2y^2)

Now this cannot be factories further.So, this is ur final answer child.

Similar questions