Math, asked by veera23, 1 year ago

IIT Maths problem.Friends I want this solution very fast.​

Attachments:

Answers

Answered by shadowsabers03
16

\boxed{1.\ \ \sqrt{2+\sqrt{2+\sqrt{2+ \dots\dots\dots\infty}}}\ =\ ?}

\begin{aligned}\text{Let}\ \ &\sqrt{2+\sqrt{2+\sqrt{2+ \dots\dots\dots\infty}}}\ =\ x\\ \\ \Longrightarrow\ \ &2+\sqrt{2+\sqrt{2+ \dots\dots\dots\infty}}\ =\ x^2\\ \\ \Longrightarrow\ \ &\sqrt{2+\sqrt{2+ \dots\dots\dots\infty}}\ =\ x^2-2\\ \\ \Longrightarrow\ \ &x=x^2-2\\ \\ \Longrightarrow\ \ &x^2-x-2=0\\ \\ \Longrightarrow\ \ &x^2+x-2x-2=0\\ \\ \Longrightarrow\ \ &x(x+1)-2(x+1)=0\\ \\ \Longrightarrow\ \ &(x+1)(x-2)=0\\ \\ \Longrightarrow\ \ &x=-1\ \ \ ; \ \ \ x=2\end{aligned}

\text{But since $x\geq 0,\ \ x\neq -1.\ \ \therefore\ \ x=2$}

\boxed{2.\ \ \sqrt{2\sqrt{2\sqrt{2 \dots\dots\dots\infty}}}\ =\ ?}

\begin{aligned}\text{Let}\ \ &\sqrt{2\sqrt{2\sqrt{2 \dots\dots\dots\infty}}}\ =\ x\\ \\ \Longrightarrow\ \ &2\sqrt{2\sqrt{2 \dots\dots\dots\infty}}\ =\ x^2\\ \\ \Longrightarrow\ \ &\sqrt{2\sqrt{2 \dots\dots\dots\infty}}}\ =\ \frac{x^2}{2}\\ \\ \Longrightarrow\ \ &x=\frac{x^2}{2}\\ \\ \Longrightarrow\ \ &x^2=2x\\ \\ \Longrightarrow\ \ &x^2-2x=0\\ \\ \Longrightarrow\ \ &x(x-2)=0\\ \\ \Longrightarrow\ \ &x=0\ \ \ ; \ \ \ x=2\end{aligned}

\boxed{3.\ \ \sqrt{6+\sqrt{6+\sqrt{6+ \dots\dots\dots\infty}}}\ =\ ?}

\begin{aligned}\text{Let}\ \ &\sqrt{6+\sqrt{6+\sqrt{6+ \dots\dots\dots\infty}}}\ =\ x\\ \\ \Longrightarrow\ \ &6+\sqrt{6+\sqrt{6+\dots\dots\dots\infty}}\ =\ x^2\\ \\ \Longrightarrow\ \ &\sqrt{6+\sqrt{6+ \dots\dots\dots\infty}}\ =\ x^2-6\\ \\ \Longrightarrow\ \ &x=x^2-6\\ \\ \Longrightarrow\ \ &x^2-x-6=0\\ \\ \Longrightarrow\ \ &x^2+2x-3x-6=0\\ \\ \Longrightarrow\ \ &x(x+2)-3(x+2)=0\\ \\ \Longrightarrow\ \ &(x+2)(x-3)=0\\ \\ \Longrightarrow\ \ &x=-2\ \ \ ; \ \ \ x=3\end{aligned}

\text{But since $x\geq 0,\ \ x\neq -2.\ \ \therefore\ \ x=3$}

\boxed{4.\ \ \sqrt{6\sqrt{6\sqrt{6 \dots\dots\dots\infty}}}\ =\ ?}

\begin{aligned}\text{Let}\ \ &\sqrt{6\sqrt{6\sqrt{6 \dots\dots\dots\infty}}}\ =\ x\\ \\ \Longrightarrow\ \ &6\sqrt{6\sqrt{6 \dots\dots\dots\infty}}\ =\ x^2\\ \\ \Longrightarrow\ \ &\sqrt{6\sqrt{6 \dots\dots\dots\infty}}}\ =\ \frac{x^2}{6}\\ \\ \Longrightarrow\ \ &x=\frac{x^2}{6}\\ \\ \Longrightarrow\ \ &x^2=6x\\ \\ \Longrightarrow\ \ &x^2-6x=0\\ \\ \Longrightarrow\ \ &x(x-6)=0\\ \\ \Longrightarrow\ \ &x=0\ \ \ ; \ \ \ x=6\end{aligned}

\left[\ \text{Remember}\ \ \sqrt{x^2}\ =\ |x|\ \geq\ 0\ \right]

Answered by Anonymous
31

Solution :-

(1)

 \sqrt{2 +\sqrt{2 +\sqrt{2+ ...\infty}}}

Now let it be equal to x then

x =  \sqrt{2 +\sqrt{2 +\sqrt{2+ ...\infty}}}

Now by squaring both sides.

x^2 = 2 +\sqrt{2 +\sqrt{2 +\sqrt{2+ ...\infty}}}

x^2 =  2+x

 x^2 - x - 2 = 0

 (x+1)(x-2) = 0

→ x = -1 , 2 but as x cannot be negative

→ x = 2

(2)

 \sqrt{2 \sqrt{2 \sqrt{2 ...\infty}}}

Now let it be equal to x then

x =  \sqrt{2 \sqrt{2 \sqrt{2 ...\infty}}}

Now by squaring both sides.

x^2 = 2 \sqrt{2 \sqrt{2 \sqrt{2 ...\infty}}}

x^2 =  2x

 x^2 - 2x = 0

 (x)(x-2) = 0

→ x = 0 , 2 but as x cannot be zero

→ x = 2

(3)

 \sqrt{6 +\sqrt{6 +\sqrt{6+ ...\infty}}}

Now let it be equal to x then

x =  \sqrt{6 +\sqrt{6 +\sqrt{6+ ...\infty}}}

Now by squaring both sides.

x^2 = 6 +\sqrt{6 +\sqrt{6 +\sqrt{6+ ...\infty}}}

x^2 =  6+x

 x^2 - x -6= 0

 (x+2)(x-3) = 0

→ x = -2 , 3 but as x cannot be negative

→ x = 3

(iv)

 \sqrt{6\sqrt{6\sqrt{6 ...\infty}}}

Now let it be equal to x then

x =  \sqrt{6\sqrt{6\sqrt{6...\infty}}}

Now by squaring both sides.

x^2 = 6 \sqrt{6\sqrt{6\sqrt{6 ...\infty}}}

x^2 =  6x

 x^2 - 6x = 0

 (x)(x-6) = 0

→ x = 0 , 6 but as x cannot be zero

→ x = 6

So Answer :-

1 :- r

2 :- r

3 :- p

4 :- q

Option (b)

Similar questions