illustrate an example of each of the three laws of motion
Answers
Answer:
mechanics. These laws explain the relation between forces and the body on which these forces acted upon.
Newton’s first law of motion gives the qualitative definition of force, Newton’s second law of motion gives the quantitative measure of the force, while Newton’s third law of motion asserts that a single isolated force does not exist.
For centuries the problem of motion and its causes was a central theme of natural philosophy, an early name for what we call physics. It was not until the time of Galileo and Newton, however, that dramatic progress was made. Isaac Newton, born in England in the year of Galileo’s death, is the principal architect of classical mechanics. He carried to full fruition the ideas of Galileo and others who preceded him. His three laws first presented (in 1686) in his Philosophiae Naturalis Principia Mathematica, usually called the Principia. In his Principia Newton stated the three fundamental laws of motion, which are the basis of Newtonian mechanics.
Before Galileo’s time, the most philosopher’s thought that some influence or “force” was needed to keep a body moving. They thought that a body was in its “natural state” when it was at rest. For a body to move in a straight line at a constant speed, for example, they believed that some external agent had to continually propel it; otherwise, it would”naturally” stop moving.
If we wanted to test these ideas experimentally we would first have to find a way to free a body from all influences of its environment or from all forces. This is hard to do, but in certain cases, we can make the forces very small. If we study the motion as we make the forces smaller and smaller, we shall have some idea of what motion would be like if the external forces were truly zero.
Let us place our test body, say a block, on a rigid horizontal plane. If we let the block slide along this plane, we note that it gradually slows down and stops. This observation was used, in fact, to support the idea that motion stopped when the external force, in this case, the hand initially pushing the block, was removed.
Explanation: