Math, asked by bansalabhishek7644, 4 months ago

Important question for class12 ​

Attachments:

Answers

Answered by Flaunt
23

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

=>Matrices can be added or subtracted.

\sf{\left[\begin{array}{c c c} y& -3 \\ 3& x\end{array}\right]}+\sf{ \left[\begin{array}{c c c} 0& 1 \\ -1 & -2\end{array}\right]}=\sf{ \left[\begin{array}{c c c} 2& -2 \\ 1 & 1\end{array}\right]}

\sf{\left[\begin{array}{c c c} y+0 & -3+1 \\ 3+(-1) &x+( -2)\end{array}\right]}=\sf{\left[\begin{array}{c c c} 2 & -2 \\ 1 & 1\end{array}\right]}

\sf{ \left[\begin{array}{c c c} y& -2 \\ 2 &x -2\end{array}\right]}=\sf{\left[\begin{array}{c c c} 2& -2 \\ 1 & 1\end{array}\right]}

\sf\implies\:Now,comparing corresponding elements of matrices on the left side with the right side.

\bold{\red{\boxed{y = 2}}}

x - 2 = 1

\bold{\blue{\boxed{x =  - 3}}}

Addition of matrices

If A=\sf{\left[\begin{array}{c c c} a_{11}& a_{12} \\ a_{21}& a_{22}\end{array}\right]}

And B=\sf{\left[\begin{array}{c c c} b_{11}& b_{12} \\ b_{21}& b_{22}\end{array}\right]}

Then ,we define as A+B=\sf{\left[\begin{array}{c c c} a_{11}+b_{11}& a_{12} +b_{12}\\ a_{21}+b_{21}& a_{22}+b_{22}\end{array}\right]}

Answered by Anonymous
0

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

=>Matrices can be added or subtracted.

\sf{\left[\begin{array}{c c c} y& -3 \\ 3& x\end{array}\right]}+\sf{ \left[\begin{array}{c c c} 0& 1 \\ -1 & -2\end{array}\right]}=\sf{ \left[\begin{array}{c c c} 2& -2 \\ 1 & 1\end{array}\right]}

\sf{\left[\begin{array}{c c c} y+0 & -3+1 \\ 3+(-1) &x+( -2)\end{array}\right]}=\sf{\left[\begin{array}{c c c} 2 & -2 \\ 1 & 1\end{array}\right]}

\sf{ \left[\begin{array}{c c c} y& -2 \\ 2 &x -2\end{array}\right]}=\sf{\left[\begin{array}{c c c} 2& -2 \\ 1 & 1\end{array}\right]}

\sf\implies\:Now,comparing corresponding elements of matrices on the left side with the right side.

\bold{\red{\boxed{y = 2}}}

x - 2 = 1

\bold{\blue{\boxed{x =  - 3}}}

Addition of matrices

If A=\sf{\left[\begin{array}{c c c} a_{11}& a_{12} \\ a_{21}& a_{22}\end{array}\right]}

And B=\sf{\left[\begin{array}{c c c} b_{11}& b_{12} \\ b_{21}& b_{22}\end{array}\right]}

Then ,we define as A+B=\sf{\left[\begin{array}{c c c} a_{11}+b_{11}& a_{12} +b_{12}\\ a_{21}+b_{21}& a_{22}+b_{22}\end{array}\right]}

Similar questions