Math, asked by MiniDoraemon, 2 months ago

Important Question for jee mains.
mathamatics :- Practice set 1​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

We know,

From cube roots of unity,

\rm :\longmapsto\: \omega \:  = \dfrac{ - 1 +  \sqrt{3} i}{2}

and

\rm :\longmapsto\:1 +  \omega \:  +  {\omega }^{2}  = 0

and

\rm :\longmapsto\: {\omega }^{3} = 1

and

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:1 +  {\omega }^{n} +  {\omega }^{2n}  -\begin{cases} &\sf{3 \: if \: n \: is \: multiple \: of \: 3} \\ &\sf{0 \: if \: n \: is \: not \: multiple \: of \: 3} \end{cases}\end{gathered}\end{gathered}

Let's solve the problem now!!

It is given that

\rm :\longmapsto\:z =  - 2 + 2 \sqrt{3}i

\rm :\longmapsto\:z =  2(- 1 +  \sqrt{3}i)

\rm :\longmapsto\:z = 2 \times 2\omega

\bf\implies \:z = 4\omega

Now,

Consider,

\rm :\longmapsto\: {z}^{2n} +  {2}^{2n} {z}^{n} +  {2}^{4n}

On substituting the value of z, evaluated above, we get

\rm  \:  = \: {(4\omega )}^{2n} +  {2}^{2n} {(4\omega )}^{n} +  {2}^{4n}

\rm \:  =  \:  \: {16}^{n} {\omega }^{2n} +  {4}^{n} {4}^{n} {\omega }^{n} +  {16}^{n}

\rm \:  =  \:  \: {16}^{n} {\omega }^{2n} +  {16}^{n}  {\omega }^{n} +  {16}^{n}

\rm \:  =  \:  \: {16}^{n} ({\omega }^{2n} +  {\omega }^{n}  + 1)

\rm \:  =  \:  \: {4}^{2n}  \times 3 \: if \: n \: is \: multiple \: of \: 3

Hence,

 \boxed{\rm \:{z}^{2n} +{2}^{2n} {z}^{n} +{2}^{4n}  ={4}^{2n}  \times 3 \: if \: n \: is \: multiple \: of \: 3}

Therefore,

  • Option (c) is correct
Similar questions