Math, asked by sonipritam1980, 1 year ago

important question please solve
16(2x - 1) {}^{2}  - 25y {}^{2}

Answers

Answered by Brâiñlynêha
1

\huge\mathbb{\underline{\blue{SOLUTION:-}}}

we have given the question :-

\sf 16(2x-1){}^{2}-25y{}^{2}

\sf{\blue{Let  (2x-1)= x}}

The. put this value:-

\sf 16x{}^{2}-25y{}^{2}

\mathtt{\underline{\red{According\:to\: question:-}}}

identity used :-

\sf a{}^{2}-b{}^{2}=(a+b)(a-b)

Now in the place of a=4 and b=5

Then the solution:-

\sf 16x{}^{2}- 25y{}^{2}\\ \\ \sf\implies(4x){}^{2}-(5y){}^{2}\\ \\ \sf\implies (4x+5y)(4x-5y)

Now put the value of x which is

(2x-1)

\sf [4(2x-1)+5y][4(2x-1)-5y]\\ \\ \sf\implies (8x+5y-4)(8x-5y-4)

\boxed{\red{\rm{(8x+5y-4)(8x-5y4)}}}

#BAL

#Answerwithquality

Answered by 3CHANDNI339
1

┏─━─━─━─━∞◆∞━─━─━─━─┓

✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✭✮

┗─━─━─━─━∞◆∞━─━─━─━─┛

 \mathbb{SOLUTION}

16(2x - 1) {}^{2} - 25 {y}^{2}

let \: (2x - 1) = x

putting \: \: this \:  \: value

16 {x }^{2}  - 25 {y}^{2}

ACCORDING TO QUESTION,

IDENTITY USED:

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

Now,

 a= 4 \: and \: b = 5

 =  > 16 {x}^{2}  - 25 {y}^{2}

 =  > 4 {x}^{2}  - 5 {y}^{2}

 =  > (4x + 5y)(4x - 5y)

PUTTING THE VALUE,

(2x - 1){4(2x - 1)}  + 5y(4(2x - 1)) - 5y

  =  > (8x + 5y - 4)(8x - 5y - 4)

▀▄ [_ANSWER_]▄▀

(8x + 5y - 4)(8x - 5y - 4)

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

#BAL

#Answerwithquality

Similar questions