Math, asked by kavya5142, 2 months ago

In √1+sin A /1-sin A = sec A + tan A, Prove RHS=LHS.​

Answers

Answered by Anonymous
50

Answer:

{ \huge{ \underline { \pmb{ \sf{Required \:  Solution:}}}}}

 : { \implies{ \sf{ \sqrt{ \frac{1 + sinA}{1 - sinA} } }}} \\  \\ { \rm{Rationalizing  \: with  \: Denominator}} \\  \\ : { \implies{ \sf{ \sqrt{ \frac{1 + sinA}{1 - sinA}  \times  \frac{1 + sinA}{1 + sinA} } }}} \\  \\ : { \implies{ \sf{ \sqrt{ \frac{ {(1 + sinA)}^{2} }{ {(1)}^{2} -  {sin}^{2}A  }  } }}}  \\  \\  : { \implies{ \sf{ \sqrt{ \frac{ {(1 +  sinA)}^{2} }{1 -  {sin}^{2} A} } }}} \\  \\ : { \implies{ \sf{ \sqrt{ \frac{ {(1 + sinA)}^{2} }{ {cos}^{2} A} } }}} \\  \\  Square \: and \: root \: got \:cancelled \\  \\: { \implies{ \sf{ \frac{1 + sinA}{cosA} }}} \\  \\  : { \implies{ \sf{ \frac{1}{cosA}  +  \frac{sinA}{cosA} }}} \\  \\  : { \implies{ \sf{secA + tanA}}} \\  \\ hence \: proved

Used identity:

  • Sin²A + Cos²A = 1
  • Cos²A = 1 - Sin²A
Similar questions