in a 275KV transmission line with line constants A = 0.8585 o and B = 200Đ75 o , if the voltage profile at each end is to be maintained at 275kV, the power at Unity Power Factor
(UPF) will be nearly
98 MW
118 MW
144 MW
184 MW
Answers
Answer:
hskxbndksbsbkajshnskdo
Answer:
b 118
Explanation:
Concept:
The reactive power flow in a transmission line is given by
\(Q = \frac{{{V_S}{V_R}}}{B}\sin \left( {\beta - \delta } \right) - \frac{{AV_R^2}}{B}\sin \left( {\beta - \alpha } \right) = 0\)
Where VS and VR are the sending end and receiving end voltages of transmission line respectively.
For unity power factor load, reactive power is zero i.e. Q = 0
The active power flow in a transmission line is given by,
\(P = \frac{{{V_S}{V_R}}}{B}\cos \left( {\beta - \delta } \right) - \frac{{AV_R^2}}{B}\cos \left( {\beta - \alpha } \right)\)
Calculation:
Given that, VS = 275 kV, VR = 275 kV
B = 200 ∠75° ⇒ β = 75°
A = 0.85 ∠5° ⇒ α = 5°
\(Q = \frac{{275\; \times \;275}}{{200}}\sin \left( {75^\circ - 5} \right) - \frac{{0.85\; \times \;{{275}^2}}}{{200}}\sin \left( {75^\circ - 5^\circ } \right) = 0\)
⇒ δ = 22°
Power delivered at unity power factor is,
\(P = \frac{{275\; \times \;25}}{{200}}\cos \left( {75^\circ - 22} \right) - \frac{{0.85\; \times \;{{275}^2}}}{{200}}\cos \left( {75^\circ - 5^\circ } \right)\)
⇒ P = 117.6 kW ≈ 118 MW