Math, asked by rnssdinesh2005, 3 months ago

In a Δ ∠ ABC B , = 90° and AB = 4 cm, BC = 3 cm and AC = 5 cm. Find sinA​

Answers

Answered by Anonymous
3

Step-by-step explanation:

 \sin(a)  =  \frac{ab}{ac}  =  \frac{4}{5}

Attachments:
Answered by Anonymous
1

GIVEN:

  • Angle B=90°
  • AB=4cm
  • BC=3cm
  • AC=5CM

TO FIND:

  • Sin A

SOLUTION:

  \large\sf Sin \:  A  =  \frac{P}{H}

Note⇝For Sin A perpendicular will be 3cm

  \large\sf   \:  \:  \underline{ \boxed{ \sf \:  \blue{Sin \:  A  =  \frac{3}{5}}}} \:  \:   \huge \checkmark

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\tt Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \tt\angle A & \bf{0}^{ \circ} & \tt{30}^{ \circ} & \tt{45}^{ \circ} & \tt{60}^{ \circ} & \tt{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Attachments:
Similar questions