Math, asked by DishaW, 9 months ago

In a ∆ABC, if 2 ∠A = 3 ∠B = 6 ∠C then calculate  ∠A,  ∠B and  ∠C.​

Answers

Answered by Disha976
6

Answer:

Let  2 ∠A = 3 ∠B = 6 ∠C = x°

Then,

 ∠A = ( \frac{x}{2}° ) ;∠B = ( \frac{x}{3} °)and \: ∠C =(  \frac{x}{6}° )

 But , ∠A + ∠B + ∠C = 180°

 .°. \frac{x}{2} +  \frac{x}{3} +  \frac{x}{6} = 180

 \implies 3x + 2x + x = 1080

 \implies 6x = 1080

 \implies x = \frac {1080}{6} = 180

 .°.  ∠A = \frac { 180}{2}°= 90°

 .°.  ∠B = \frac { 180}{3}°= 60°

 .°.  ∠C = \frac { 180}{6}°= 30°

Hence, ∠A = 90° , ∠B = 60° and ∠C = 30°

Hope it helps♥

Answered by Anonymous
3

Answer :-

Let all angles be x

Then,

• ∠A = x/2

• ∠B = x/3

• ∠C = x/6

 \frac{x}{2}  +  \frac{x}{3}  +  \frac{x}{6}  = 180

 =  >  \frac{6x + 4x + 2x}{12}  = 180

 =  >  \frac{12x}{12}  = 180

 =  > x = 180

__________________________

∠a =  \frac{x}{2}  =  \frac{180}{2}  = 90

∠b =  \frac{x}{3}  =  \frac{180}{3}  = 60

∠c =  \frac{x}{6}  =  \frac{180}{6}  = 30

Similar questions