CBSE BOARD XII, asked by subu49, 10 months ago

in a ∆ABC if 3a=b+c then find value of CotB/2 .Cot C/2

Answers

Answered by Anonymous
28

\bf{\Huge{\boxed{\rm{\blue{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

In a ΔABC, If 3a = b + c.

\bf{\Large{\underline{\bf{To\:find\::}}}}

The value of cotB/2 * cotC/2.

\bf{\Large{\underline{\tt{\red{Explanation\::}}}}}

We know that formula of the semi - perimeter of Δ:

\leadsto\sf{\Large{\boxed{\rm{Semi\:-\:perimeter\:(S)=\:\frac{a+b+c}{2} }}}}}

A/q

\longmapsto\sf{S\:=\:\frac{a+b+c}{2} }

\longmapsto\sf{S\:=\:\frac{a+3a}{2} }

\longmapsto\sf{S\:=\:\cancel{\frac{4a}{2}} }

\longmapsto\sf{\pink{S\:=\:2a}}

Now,

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\sqrt{\frac{(s)(s-b)}{(s-a)(s-c)} } .\sqrt{\frac{s(s-c)}{(s-a)(s-b)} } }

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\sqrt{\frac{s^{2} (s-b)(s-c)}{(s-a)^{2} (s-b)(s-c)} } }

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\sqrt{\frac{s^{2} \cancel{(s-b)(s-c)}}{(s-a)^{2} \cancel{(s-b)(s-c)}} } }

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\frac{s}{s-a} }

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\frac{2a}{2a-a} }

\longmapsto\sf{cot\frac{B}{2} .cot\frac{C}{2} \:=\:\cancel{\frac{2a}{a} }}

\longmapsto\sf{\red{cot\frac{B}{2} .cot\frac{C}{2} \:=\:2} }

Thus,

\bf{\Large{\boxed{\tt{The\:\:value\:\:is\:\:\:\:2}}}}}

Similar questions