Math, asked by bs70103, 1 year ago

In a ABC, if 3ZA = 4ZB = 6ZC, calculate the angles.​

Answers

Answered by ayushr2005b
6

Step-by-step explanation:

Given:

In ∆ABC , 3∠A= 4∠B= 6∠C

Let x= 3∠A= 4∠B= 6∠C

X=3∠A

∠A= x/3

X=4∠B

∠B= x/4

X=6∠C

∠C= x/6

By angle sum property

∠A+∠B+∠C= 180°

Put the value of ∠A, ∠B, ∠C

X/3+x/4+x/6= 180°

L.c.m of 3,4,6 = 12

(4x + 3x +2x) /12 = 180°

9x = 12 × 180

X= (12× 180) /9

X= 240°

∠A= x/3

∠A= 240/3 = 80°

∠B= x/4

∠B= 240/4= 60°

∠C= x/6

∠C= 240/6 = 40°

_____________________________

Hence the angles be

∠A=80°

∠B=60°

∠C= 40°

_____________________________

Hope this will help you.....

Answered by praveersinghchauhan
2

Answer:

a=80;b=60;c=40

Step-by-step explanation:

a+b+c=180   ----------1 [angle sum of a triangle]

4zb=3za

b=3za/4z

b=3a/4-------------------2

3za=6zc

a=6zc/3z

a=2c

c=a/2  ----------------3

by putting 2 and 3 in 1

a+(3a/4)+(a/2)=180

((4a+3a)/4)+(a/2)=180

(7a/4)+(a/2)=180 (7a+2a)/4=180

9a=4*180

a=4*180/9

a=4*20

a=80

by 3

c=80/2

c=40

by using 1

80+b+40=180

b=180-120

b=60

!!!!!!!!!!!!!!!!!!!!!!plz mark me as brainlist!!!!!!!!!!hope it helps!!!!!!!!!!!!11

Similar questions