In a ABC, if 3ZA = 4ZB = 6ZC, calculate the angles.
Answers
Step-by-step explanation:
Given:
In ∆ABC , 3∠A= 4∠B= 6∠C
Let x= 3∠A= 4∠B= 6∠C
X=3∠A
∠A= x/3
X=4∠B
∠B= x/4
X=6∠C
∠C= x/6
By angle sum property
∠A+∠B+∠C= 180°
Put the value of ∠A, ∠B, ∠C
X/3+x/4+x/6= 180°
L.c.m of 3,4,6 = 12
(4x + 3x +2x) /12 = 180°
9x = 12 × 180
X= (12× 180) /9
X= 240°
∠A= x/3
∠A= 240/3 = 80°
∠B= x/4
∠B= 240/4= 60°
∠C= x/6
∠C= 240/6 = 40°
_____________________________
Hence the angles be
∠A=80°
∠B=60°
∠C= 40°
_____________________________
Hope this will help you.....
Answer:
a=80;b=60;c=40
Step-by-step explanation:
a+b+c=180 ----------1 [angle sum of a triangle]
4zb=3za
b=3za/4z
b=3a/4-------------------2
3za=6zc
a=6zc/3z
a=2c
c=a/2 ----------------3
by putting 2 and 3 in 1
a+(3a/4)+(a/2)=180
((4a+3a)/4)+(a/2)=180
(7a/4)+(a/2)=180 (7a+2a)/4=180
9a=4*180
a=4*180/9
a=4*20
a=80
by 3
c=80/2
c=40
by using 1
80+b+40=180
b=180-120
b=60
!!!!!!!!!!!!!!!!!!!!!!plz mark me as brainlist!!!!!!!!!!hope it helps!!!!!!!!!!!!11