Math, asked by Fasi1332, 1 year ago

In a ∆ABC, if a = 3, b = 5, c = 7, find cosA, cosB and cosC.

Answers

Answered by Momsangel
4
cos A=
 \frac{3}{7}
cos B=
 \frac{5}{7}
cosC=
 \frac{5}{7}

Answered by HappiestWriter012
8

In a Triangle ABC,

If AB = c, BC = a, AC = b

By cosine rule,

c² = a² + b² - 2abcosC

2abcosC= a² + b² - c²

cosC  =  \frac{ {a}^{2}  +  {b}^{2}   -  {c}^{2} }{2ab} \\  \\ cos  B  =  \frac{ {c}^{2}  +  {a}^{2}   -  {b}^{2} }{2ac} \\  \\ cosA = \frac{ {c}^{2}  +  {b}^{2}   -  {a}^{2} }{2bc}

Given

a = 3

b = 5

c = 7

Now,

cosC  =  \frac{ {a}^{2}  +  {b}^{2}   -  {c}^{2} }{2ab}  \\  \\ cosC =    \frac{ {3}^{2}  +  {5}^{2}  -  {7}^{2} }{2(5)(3)}  \\  \\ cosC =  \frac{25+ 9 - 49}{30}  \\  \\ cosC =  \frac{ - 15}{30}  \\  \\ cosC =  \frac{ - 1}{2}

Therefore, cosC = - 1/2

cos  B  =  \frac{ {c}^{2}  +  {a}^{2}   -  {b}^{2} }{2ac} \\  \\ cos  B  =  \frac{ {7}^{2}  +  {3}^{2}   -  {5}^{2} }{2(7)(3)} \\  \\ cos  B  = \frac{49 + 9 - 25}{42}    \\  \\ cos  B   =  \frac{33}{42}  =  \frac{11}{14}

Therefore, cosB = 11/14

cosA = \frac{ {c}^{2}  +  {b}^{2}   -  {a}^{2} }{2bc} \\  \\ cosA= \frac{ {7}^{2}  +  {5}^{2}   -  {3}^{2} }{2(7)(5)}  \\  \\ cosA= \frac{49 + 25 - 9}{70}   =  \frac{65}{70}  =  \frac{13}{14}

Therefore, cosA = 13/14

Similar questions