In a ∆ABC, right angled at A, if , find the value of sin B cos C + cos B sin C.
Answers
SOLUTION :
Given:
In ΔABC , Right angled at A.
tan C = √3
tan C = √3/1 = P/B = AB/AC
In right ∆ ABC, by using Pythagoras theorem
BC² = AB² +AC²
BC² = (√3)² + 1²
BC² = 3 + 1
BC² = 4
[by taking square root on both sides]
BC = √4
BC= 2
Hypotenuse side (BC)= 2
With reference to ∠C , base = AC, Hypotenuse = BC , perpendicular = AB
With reference to ∠B , base = AB, Hypotenuse = BC, perpendicular = AC
Now, sin B = Perpendicular/ Hypotenuse
sin B= AC/ BC
sin B = 1/2
Now, cos B= base / Hypotenuse
cos B = AB/BC
cos B= √3/2
sin C = Perpendicular/ Hypotenuse
sin C = AB/AC
sin C = √3/2
cos C= base / Hypotenuse
cos C = AC/BC
cos C= 1/2
sinB cosC + cosB sin C
= ½ × 1/2 + √3/2 × √3/2
= ¼ + ¾
= (1+3)/4
= 4/4
= 1
sinB cosC + cosB sin C = 1
Hence, the value of sinB cosC + cosB sin C = 1
HOPE THIS ANSWER WILL HELP YOU...