Math, asked by ravindrajambhule, 1 day ago

In a ABC seg AP in median. If BC = 18, AB²+ AC² =260 find AP.​

Answers

Answered by user0888
57

\large\text{\underline{Let's begin:-}}

The Apollonius theorem is a theorem about triangles and median.

In \triangle ABC, if \overline{AP} is the median, the following equation is satisfied.

\hookrightarrow\overline{AB}^{2}+\overline{AC}^{2}=2(\overline{AP}^{2}+\overline{BP}^{2})

\large\text{\underline{Solution:-}}

We can find that \overline{BP}=\dfrac{1}{2}\overline{BC}=9.

\hookrightarrow\overline{AB}^{2}+\overline{AC}^{2}=2(\overline{AP}^{2}+\overline{BP}^{2})

\hookrightarrow 260=2(9^{2}+\overline{AP}^{2})

\hookrightarrow \overline{AP}^{2}+162=260

\hookrightarrow\overline{AP}^{2}=98

We only count positive values as lengths. So, rejecting the negative solution,

\hookrightarrow\overline{AP}=\sqrt{2\cdot7^{2}}=7\sqrt{2}

\large\text{\underline{Conclusion:-}}

The answer is \overline{AP}=7\sqrt{2}.

Answered by ItzAshi
227

Step-by-step explanation:

Question :

In a ABC seg AP in median. If BC = 18, AB²+ AC² = 260 find AP.

For better understanding please refer to the attachment

Solution :

According to the question,

{\bold{\sf{⟼  \:  \:  \:  \:  \: PC \:  =  \: \frac{1}{2} \: BC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [Midpoint \:  theorem]}}} \\

{\bold{\sf{⟼  \:  \:  \:  \:  \: PC \:  = \:  \frac{1}{2}  \: × \:  18 }}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  PC  \: =  \: 9 }}} \\

We know that in ∆ABC, segment AP is the median

 {\bold{\sf{Now, \:  AB²  \: +  \: AC² \:  =  \: 2A²  \: +  \: 2 PC²  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [Apollonius  \: theorem]}}} \\

{\bold{\sf{⟼ \:  \:  \:  \: 260  \: =  \: 2AP²  \: +  \: 2 (9)²}}} \\

{\bold{\sf{⟼ \:  \:  \:  \: 130  \: =  \: AP² \:  + \:  81  \:  \:  \:  \:  \:  \:  \:  \:  \: [Dividing \:  both  \: sides \:  by  \: 2] }}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: AP²  \: =  \: 130 \: \:   –   \: \: 81 }}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: AP²  \: =  \: 49 }}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: AP \:  = √49 \:  \:  \:  \:  \:  \:  \:  \:  \:  [Taking  \: square  \: root \:  of \:  both  \: sides] }}} \\

⟼ \:  \:  \:  \:  \: {\bold{\underline{\boxed{\sf{\color{cyan}{AP \:  = \:  7}}}}}} \\

Attachments:
Similar questions