in a Ap given a3=15,s10=125 find d and a10
Answers
Answered by
61
S10=10÷2 (2a +(10-1)d=5 (2a+9d)
125=5 (2a+9d)
125÷5=2a+9d
25=2a+9d _(1)
a3=a+2d
15=a+2d _(2)
subtracting equation (2) from (1) ,we get
2a+9d -a -2d =25-15
a+7d=10
a=10-7d _(3)
put the value of a in equation (2)
15=10-7d +2d
d=-1
put d=-1 in (3)
a=10-(-1×7)
a=17
now, a10=a+9d
a10=17-9
a10=8
a=
125=5 (2a+9d)
125÷5=2a+9d
25=2a+9d _(1)
a3=a+2d
15=a+2d _(2)
subtracting equation (2) from (1) ,we get
2a+9d -a -2d =25-15
a+7d=10
a=10-7d _(3)
put the value of a in equation (2)
15=10-7d +2d
d=-1
put d=-1 in (3)
a=10-(-1×7)
a=17
now, a10=a+9d
a10=17-9
a10=8
a=
Answered by
6
Answer:
an=a+(n-1)d
a3=a+(3-1)d
15=a+2d
a+2d=15 _________ {1}
Sn=n/2(2a+{n-1}d)
S10=10/2(2a+{10-1}d)
125=5(2a+9d)
125/5=2a+9d
25=2a+9d ___________{2}
solving eq{1} & eq{2}
putting a value in eq {2}
2(15-2d)+9d=25
30-4d+9d=25
5d=25-30
=-5
=d=-1
=>an=a+(n-1)d
a10=a+(10-1)d
a10=a+9d
a10=17+9(-1)
a10=17-9
a10=8
Similar questions