In a
equilateral triangle of Side 3√3
Find the length of
the altitude
cm
Answers
Answer:
4.5cm
Step-by-step explanation:
REF.Image
Given
side of an equilateral triangle
ABC=3
3
cm
AB=BC−AC=3
3
cm
Let AD=h (altitude)
BD=
2
1
B (Altitude bisect the base)
BD=
2
1
.3
3
=3
3
/2 cm
AB
2
=AD
2
+BD
2
(3
3
)
2
=(h)
2
+(3
3
/2)
2
⇒27=h
2
+27/4
⇒h
2
=27−27/4
⇒h
2
=(4.27−27)/4
⇒h
2
=108−27/4
⇒h
2
=81/7
⇒h=
81/4
⇒h=9/2
⇒h=4.5cm
Hence, the length of the altitude h is 4.5 cm
Answer:
Length of altitude is 4.5
Step-by-step explanation:
REF.Image
Given
side of an equilateral triangle
ABC=3
3
cm
AB=BC−AC=3
3
cm
Let AD=h (altitude)
BD=
2
1
B (Altitude bisect the base)
BD=
2
1
.3
3
=3
3
/2 cm
AB
2
=AD
2
+BD
2
(3
3
)
2
=(h)
2
+(3
3
/2)
2
⇒27=h
2
+27/4
⇒h
2
=27−27/4
⇒h
2
=(4.27−27)/4
⇒h
2
=108−27/4
⇒h
2
=81/7
⇒h=
81/4
⇒h=9/2
⇒h=4.5cm
Hence, the length of the altitude h is 4.5 cm