Math, asked by purprajkta597, 7 months ago

In a expansion of (2x - 3)³, the co-efficient of x is​

Answers

Answered by Anonymous
12

Step-by-step explanation:

\huge{\underline{\underline{Given→}}}

  • \sf\green{Equation=(2x-3)^3}

\huge{\underline{\underline{To\:Find→}}}

\sf\pink{→Coefficient\:of\:‘x’\:after\:expanding\:the\:equation.}

\huge{\underline{\underline{Answer→}}}

 ({2x - 3})^{3} \\  =  ({2x})^{3} + ( { - 3})^{3} + 3(2x)( - 3)(2x - 3) \\  =  {8x}^{3} - 27 +  - 18x(2x - 3) \\  =  {8x}^{3} - 27 - (18x)(2x) - (18x)( - 3) \\  =  {8x}^{3} - 27 -  {36x}^{2} + 54x \\  =  {8x}^{3} -  {36x}^{2} + 54x - 27

\sf{\boxed{\boxed{\red{→8x^3-36x^2+54x-27✔}}}}

As the x term is +54x so the coefficient of x is 54 which is the required answer.

\bold{\underline{\underline{Identity\:used→}}}

\sf\purple{→(a+b)^3=a^3+b^3+3ab(a+b)}

HOPE IT HELPS.

Similar questions