In a figure, AB and CD are perpendicular to the line segment AD. AD and BC intersect at P, such that PA=PD. Prove that AB=CD and P is the mid point of BC
Answers
Answered by
3
AB and CD are the perpendicular to the line AD
The intersecting point p is have similar distance like PA ,PB,PC and PD
if PA=PD
then PC is also = PB
so P is the mid point of BC
PA+PB=AB
PC+PD=CD
if PA=PD
then AB=CD also
The intersecting point p is have similar distance like PA ,PB,PC and PD
if PA=PD
then PC is also = PB
so P is the mid point of BC
PA+PB=AB
PC+PD=CD
if PA=PD
then AB=CD also
Similar questions