Math, asked by freebanda, 1 year ago

in a fraction twice the numerator is 2 more than the denominator if 3 is added to the numerator and to the denominator the new fraction is 2 by 3 find the original fraction

Answers

Answered by jagdishchawla7pa9j62
3
The solution is explained in the attached pic. Hope this helps:) Have a great day.
Attachments:

freebanda: ,ek aur question solve kijie
Answered by AnIntrovert
1

Correct Question :

In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to the numerator and to the denominator, the new fraction is 2/3 . Find the original fraction.

Given :

In a fraction, twice the numerator is 2 more than the denominator.

If 3 is added to the numerator and to the denominator, the new fraction is 2/3.

To find :

The original fraction.

Solution :

Let the numerator be x and the denominator be y .

According to the 1st condition :-

In a fraction, twice the numerator is 2 more than the denominator.

\implies\sf{2x=y+2}

\implies\sf{y=2x-2........eq(1)}

According to 2nd condition :-

If 3 is added to the numerator and to the denominator, the new fraction is 2/3.

\implies\sf{\frac{x+3}{y+3}=\frac{2}{3}}

\implies\sf{3x+9=2y+6}

✪ Now put the value of y=2x-2 from eq (1)✪

\implies\sf{3x+9=2(2x-2)+6}

\implies\sf{3x+9=4x-4+6}

\implies\sf{3x-4x=-9+2}

\implies\sf{-x=-7}

\implies\sf{x=7}

✪ Now put x = 7 in eq(1) ✪

\implies\sf{y=2x-2}

\implies\sf{y=2\times\:7-2}

\implies\sf{y=14-2}

\implies\sf{y=12}

★ Numerator = 7

★ Denominator = 12

{\boxed{\bold{Fraction=\dfrac{Numerator}{Denominator}}}}

Therefore,

{\boxed{\purple{\bold{Original\: fraction=\dfrac{x}{y}=\dfrac{7}{12}}}}}</p><p>

Similar questions