Math, asked by venkataraodegala92, 11 months ago

in a gp,2nd term is 24,5th term is 1280.find common ratio​

Answers

Answered by pmvjs299
0

Answer:

r=4(\sqrt[3]{\frac{5}{6} })

Step-by-step explanation:

given:

2nd term = 24

5th term = 1280

general form 'n' th term  of a GP is --   T_{n} = ar^{n-1}  

where  a  =   first term of gp

           r = common ratio of gp

we have,

T_{2} = 24                                  |        T_{5} = 1280

ar^{2-1}  = 24                             |       ar^{5-1} = 1280

ar = 24   --------------( 1 )          |       ar^{4} = 1280 ---------------- ( 2 )

now divide equation 2 by 1.

\frac{ar^{4}}{ar} = \frac{1280}{24}

r^{3} = \frac{1280}{24}

r=\sqrt[3]{\frac{64*20}{24} }

hence the common ratio is ....

r=4(\sqrt[3]{\frac{5}{6} })      (  simply r = 3.764 )

thus you got the answer.                  

Hope it  helps !    

Similar questions