Math, asked by makermaker336, 4 months ago

In a Group Z11 under multiplication operation the
inverse of 9 is​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{Z_{11}}

\textbf{To find:}

\textsf{Inverse of 9 under multiplication}

\textbf{Solution:}

\textbf{Inverse\;axiom:}

\boxed{\mathsf{a\,*\,a^{-1}=a^{-1}\,*\,a=e}}

\textsf{e-Identity element}

\mathsf{a^{-1}\;is\;the\;inverse\;of\;a}

\textsf{Consider,}

\mathsf{Z_{11}=\{0,1,2,3,4,5,6,7,8,9,10\}}

\mathsf{9\,._{11}\,1=9}

\mathsf{9\,._{11}\,2=7}

\mathsf{9\,._{11}\,3=5}

\mathsf{9\,._{11}\,4=3}

\boxed{\mathsf{9\,._{11}\,5=1}}

\implies\textsf{Inverse of 9 is 5}

\textbf{Find more:}

Show that the set z of all integers form a group with respect to binary operation defined by a*b-a+b+1 is an abelian group

https://brainly.in/question/9282783

Consider an algebraic system (Q,*), where Q is the set of all non-zero rational numbers and * is a binary operation defined by a * b =a + b - ab . Determine whether (Q,*) is a group.

https://brainly.in/question/16197146

Similar questions