in a isosceles triangle ABC,AB=ACand D is a point on BC produced. prove that ADsquare =ACsquare+BD.CD
Answers
Answered by
2
In order to draw the result ,first draw AE ⊥ BC
Perpendicular drawn from the vertex to the opp. base of an isosceles Δ bisects the base
∴BE = EC
Applying pythagoras theorem in right Δ AED
AD² = AE² + ED².....................(i)
Again applying pythagoras theorem in right Δ AEC
AC² = AE² + EC²...............(ii)
From (i) and (ii) ,we get
AD² = (AC² - EC²) + ED² [ AC² = AE² + EC² ⇒ AE² = AC² - EC²]
AD² = AC² + (- EC² + ED² )
AD² = AC² + ( ED² - EC² )
AD² = AC² + ( ED + EC )( ED - EC)
AD² = AC² + ( ED + BE )( ED - EC) {∵BE = EC }
⇒AD² = AC² + BD.CD
Perpendicular drawn from the vertex to the opp. base of an isosceles Δ bisects the base
∴BE = EC
Applying pythagoras theorem in right Δ AED
AD² = AE² + ED².....................(i)
Again applying pythagoras theorem in right Δ AEC
AC² = AE² + EC²...............(ii)
From (i) and (ii) ,we get
AD² = (AC² - EC²) + ED² [ AC² = AE² + EC² ⇒ AE² = AC² - EC²]
AD² = AC² + (- EC² + ED² )
AD² = AC² + ( ED² - EC² )
AD² = AC² + ( ED + EC )( ED - EC)
AD² = AC² + ( ED + BE )( ED - EC) {∵BE = EC }
⇒AD² = AC² + BD.CD
Attachments:
LoveleenJohaL:
Thank you
Similar questions
English,
8 months ago
Math,
8 months ago
Science,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago