Math, asked by singhjeetfazilpuria8, 2 months ago

in a isosceles triangle ABC, with AB=AC, the bisectors of angle B and angle C intersect each other at O. join A to O . show that :
(i)OB=OC (ii) AO bisect angle A​

Answers

Answered by shivamcharan2089
1

Answer:

hg ah well as the first time in the morning. The may have a great day. The list is a good

Answered by CommanderBrainly
6

Step-by-step explanation:

\huge\color{Red}{\colorbox{black}{XxItzAdarshxX }}

Solution:-

Solution:-Given:-

AB = AC and

the bisectors of B and C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

B = C

½ B = ½ C

⇒ OBC = OCB (Angle bisectors)

∴ OB = OC (Side opposite to the equal angles are equal.)

(ii) In ΔAOB and ΔAOC,

AB = AC (Given in the question)

AO = AO (Common arm)

OB = OC (As Proved Already)

So, ΔAOB ΔAOC by SSS congruence condition.

BAO = CAO (by CPCT)

Thus, AO bisects A.

\large\bf{\underline\green{❥thαnk \; чσu ♥♥}}

Happy learning!

Be brainly!

Similar questions