In a new system of units energy (E) density (d) and power(p) are take as fundamental units then the dimensional formulae if gravirational constant G will be
Answers
Answered by
3
G= Fd²/ Mm
Dimensional formula = [ML][L]²/[T]²[M]²
= [L]³/M[T]²
Dimensions of E,D & P
E= [ML²]/[T]²
P = [ML²]/[T]³
D= [M]/[L]³
So, the dimensional formula for G in terms of E,D & P will be
G= [P]²[D]/ [E]²
Dimensional formula = [ML][L]²/[T]²[M]²
= [L]³/M[T]²
Dimensions of E,D & P
E= [ML²]/[T]²
P = [ML²]/[T]³
D= [M]/[L]³
So, the dimensional formula for G in terms of E,D & P will be
G= [P]²[D]/ [E]²
Answered by
0
Answer:
G = E⁻² D⁻¹ P²
Explanation:
E = [ M L² T⁻² ]
P = [ M L² T⁻³ ]
D = [ M L⁻³ T⁰ ]
G = Nm²/Kg² => [ M⁻¹ L³ T⁻² ]
G = Eᵃ Dᵇ Pˣ
Put values of E, D, P
G = [ M L² T⁻² ]ᵃ [ M L⁻³ ]ᵇ [ M L² T⁻³ ]ˣ
G = [ Mᵃ⁺ᵇ⁺ˣ L²ᵃ⁻³ᵇ⁺²ˣ T⁻²ᵃ⁻³ˣ ]
COMPARE
a + b + x = -1
2a - 3b + 2x = 3
-2a -3x = -2
a = -2
b = -1
x = 2
G = [ E⁻² D⁻¹ P² ]
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
Math,
1 year ago
Hindi,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago
Math,
1 year ago