In A.P, prove that S30 = 3(S20 - S10 )
Answers
Answered by
152
sum of the first n terms of an A.P= ( n / 2) [ 2a + ( n -1) d ]
so, S30=( 30 / 2) [ 2a + ( 30 -1) d ]
= 15 [ 2a + 29d ]________________________________________(1)
now, S20 - S10 = ( 20 / 2) [ 2a + ( 20 -1)d ] - ( 10 / 2) [ 2a + ( 10 -1) d ]
= 10 [ 2a + ( 20 -1)d ] - 5 [ 2a + ( 10 -1)d ]
= 10a + 190d - 45d
= 10a + 145d
therefore, 3( S20 - S10 ) = 3( 10a + 145d )
= 3 x 5 ( 2a + 29d )
=15 (2a + 29d)____________________________(2)
Hence,from 1 and 2,we proved that S30 = 3(S20 - S10 )
so, S30=( 30 / 2) [ 2a + ( 30 -1) d ]
= 15 [ 2a + 29d ]________________________________________(1)
now, S20 - S10 = ( 20 / 2) [ 2a + ( 20 -1)d ] - ( 10 / 2) [ 2a + ( 10 -1) d ]
= 10 [ 2a + ( 20 -1)d ] - 5 [ 2a + ( 10 -1)d ]
= 10a + 190d - 45d
= 10a + 145d
therefore, 3( S20 - S10 ) = 3( 10a + 145d )
= 3 x 5 ( 2a + 29d )
=15 (2a + 29d)____________________________(2)
Hence,from 1 and 2,we proved that S30 = 3(S20 - S10 )
Anonymous:
plss mark as the best if it was helpful....
Answered by
46
Answer:
sum of the first n terms of an A.P= ( n / 2) [ 2a + ( n -1) d ]
so, S30=( 30 / 2) [ 2a + ( 30 -1) d ]
= 15 [ 2a+29d] _____________________(1)
now, S20 - S10 = ( 20 / 2) [ 2a + ( 20 -1)d ] - ( 10 / 2) [ 2a + ( 10 -1) d ]
= 10 [ 2a + ( 20 -1)d ] - 5 [ 2a + ( 10 -1)d ]
= 10a + 190d - 45d
= 10a + 145d
therefore, 3( S20 - S10 ) = 3( 10a + 145d )
= 3 x 5 ( 2a +29d ) =15(2a+29d)_______________(2)
Hence,from 1 and 2,we can see that S30 = 3(S20 - S10)
Plz mark BRAINLIEST
^_^
Similar questions