In a quadrilateral ABCD, ∠B = 90° and ∠D = 90°. Prove that :
2AC² - AB² = BC² + CD² + DA²
Answers
Given :-
In a quadrilateral ABCD, ∠B = 90° and ∠D = 90°.
To Prove :-
2AC² - AB² = BC² + CD² + DA²
Solution :-
In △ABC , using pythagoras theorem
➞ AC² = AB² + BC²( i )
In △ADC, using pythagoras theorem
➞AC² = AD² + DC²__ ( ii )
Adding (i) and (ii)
AC² + AC ² = AB ² + BC ² + AD ² + DC ²
2AC ² = AB ² + BC ² + AD + DC
2AC ² - AB² = BC ² + CD ² +DA²
Hence Proved.
▂▂▂▂▂▂▂▂▂▂▂▂
Given
- ABCD is a quadrilateral
- ∠B = 90°
- ∠D = 90°
To find
- 2 AC² - AB² = BC² + CD²+ DA²
Solution
In ∆ABC
By pythagoras theorem,
AC² = AB² + BC² ---- (1)
In ∆ADC
By pythagoras theorem,
AC² = CD² + DA² --- (2)
Add (1) and (2),
AC² + AC² = AB² + BC² + CD² + DA²
2AC² = AB² + BC² + CD² + DA²
2AC² - AB² = BC² + CD² + DA²
Hence, proved.
Figure :-
__________________________
Know More :-
Pythagoras theorem :-
In a right - angled triangle, the sum of the square of the hypotenuse is equal to the sum of the square of the other two sides.
• H² = P² + B²
where,
- H = hypotenuse (the longest side)
- P = perpendicular
- B = base
Converse of pythagoras theorem :-
If the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right angled triangle.