in a quadrilateral ABCD, the bisector of <C <D interset at 0
prove thout <cod=$(<A+CB)
Answers
Answered by
1
Step-by-step explanation:
In given figure ABCD is a quadrilateral.
⇒ CO and DO are bisector of ∠C and ∠D
In △COD,
⇒ ∠COD+∠1+∠2=180
∘
[Sum of all interior angles of triangle is 180
c
irc]
⇒ ∠COD=180
∘
−(∠1+∠2)
⇒ ∠COD=180
∘
−(
2
1
∠C+
2
1
∠D)
⇒ ∠COD=180
∘
−
2
1
(∠C+∠D)
⇒ ∠COD=180
∘
−
2
1
[360
∘
−(∠A+∠B)]
⇒ ∠COD=180
∘
−180
∘
+
2
1
(∠A+∠B)
∴ ∠COD=
2
1
(∠A+∠B)
Attachments:
Similar questions