in a quadrilateral PQRS if angle P is 60 and angle Q,angles R and angle S is in ratio 2: 3: 7.find angles
Answers
Answer:
∠P = 60°
Let x be the common multiple of ∠Q, ∠R, ∠S.
∠Q = 2x
∠R = 3x
∠S = 7x
Interior sum of the quadrilateral = 360°
⇒ ∠P + ∠Q + ∠R + ∠S = 360°
⇒ 60° + 2x + 3x + 7x = 360°
⇒ 60° + 12x = 360°
⇒ 12x = 360° - 60°
⇒ 12x = 300°
⇒ x = 300/12
⇒ x = 25°
Let's substitute the value to find ∠Q, ∠R, ∠S.
∠Q = 2x = 2(25) = 50°
∠R = 3x = 3(25) = 75°
∠S = 7x = 7(25) = 175°
Given :
⬤ Angle P = 60°
⬤ Angle Q , R , S is in ratio 2 : 3 : 7.
To Find :
⬤ The Angles .
Solution :
Let :
- Angle Q , R and S be 2x , 3x and 7x .
Now :
As we know that , The sum of all angles of a Quadrilateral is 360° . Hence ,
60° + 12x = 360°
12x = 360° - 60°
12x = 300°
x = 300/12
x = 25
Therefore , The Value of x is 25 .
Hence ,
Angle P = 60°
Angle Q = 2x
= 2(25)
= 50°
Angle R = 3x
= 3(25)
= 75°
Angle S = 7x
= 7(25)
= 175°
Hence , The four angles of a Quadrilateral are 60° , 50° , 75° and 175° .
Check :
60° + 2(25) + 3(25) + 7(25) = 360°
60° + 50° + 75° + 175° = 360°
360° = 360°