Math, asked by sanju2363, 1 month ago

Question: An aeroplane with its wings spread 10 m is flying with speed 180 kph in

horizontal direction. The total intensity of earth’s field is 4 2.5 10− × Tesla and angle of dip is

60 . ° Then find emf induced between the tips of the plane wings.

Options:

(a) 108 mV

(b) 54 mV

(c) 216 mV

(d) 140 mV​

Answers

Answered by BrainlyTornado
45

CORRECT QUESTION:

An aeroplane, with its wings spread 10 m, is flying at a speed of 180 km/h in a horizontal direction. The total intensity of earth's field at that part is 2.5 × 10^{-4} Wb/m² and the angle of dip is 60°. The emf induced between the tips of the plane wings.

\\ \\

ANSWER:

  • The emf induced between the tips of the plane wings = 108 mV.

\\ \\

GIVEN:

  • Length of wings = 10 m.

  • Speed of aeroplane = 180 kmph.

  • Earth's magnetic field = 2.5 × 10^{-4} Wb/m²

\\ \\

TO FIND:

  • The emf induced between the tips of the plane wings.

\\ \\

EXPLANATION:

 \bigstar \red{ \boxed{ \bold{ \large{e = \vec{B} \ \vec{l}  \ \vec{v} }}}} \\  \\  \\  \tt\pink{ Here \ \vec{B} \ \perp \ \vec{l} \ \perp \ \vec{v} }\\  \\  \\ \tt \green{Imagine\ the\ velocity\ is \ in \ x-direction.}\\  \\  \\  \tt \blue{Then\ we\ need\ vertical\ component} \\  \tt \blue{of\ Earth's \ magnetic\ field \ which} \\  \tt \blue{will\ be\ in\ y-direction.} \\  \\  \\ \texttt{\orange{We already know that the wings are}}\\ \texttt{\orange{perpendicular to the velocity }}\\ \texttt{\orange{and so to the vertical component of }}\\ \texttt{\orange{Earth's magnetic field. So it will }}  \\ \texttt{\orange{be in z-direction.}} \\  \\  \\ \tt \vec{B} \ \vec{l}  \ \vec{v} = B \ sin  {60}^{ \circ}  \times 10 \times 180 \times  \dfrac{5}{18}  \\  \\  \\ \tt \vec{B} \ \vec{l}  \ \vec{v} = 2.5 \times  {10}^{ - 4} \times  \frac{ \sqrt{3} }{2}   \times 10 \times 50 \\  \\  \\  \tt\vec{B} \ \vec{l}  \ \vec{v} =   2.5 \times 1.732 \times 250  \times  {10}^{ - 4} \\  \\  \\ \\  \tt\vec{B} \ \vec{l}  \ \vec{v} =625 \times 1.732 \times  {10}^{ - 4}  \\  \\  \\ \\  \tt\vec{B} \ \vec{l}  \ \vec{v} =1082.5 \times  {10}^{ - 4}  \implies108.2 \ mV \\  \\  \\

Hence the emf induced between the tips of the plane wings = 108 mV.

Answered by MagicalLove
114

 \maltese \:  \: { \underline{ \underline{ \bf{ \red{Question:}}}}}

• An aeroplane with its wings spread 10 m is flying with speed 180 kph in horizontal direction. The total intensity of earth’s field is 2.5× 10^-4Tesla and angle of dip is 60° . Then find emf induced between the tips of the plane wings.

 \\  \\

 \maltese \:  \: { \underline{ \underline{ \bf{ \red{Answer:}}}}}

 \looparrowright \bf \pink{option \: (a) \: 108 \: mV}

 \\  \\  \\

 \maltese \: { \underline{ \underline{ \red{ \bf{Given :}}}}}

 \bullet \tt \: B \:  = 2.5 \times  {10}^{ - 4}  \:  \: T \\  \\  \bull \tt \: δ = 60 \degree

 \\  \\

 \maltese \:  \: { \underline{ \underline{ \red{ \bf{To  \:  \: Find:}}}}}

  • Then find emf induced between the tips of the plane wings.

 \\  \\

 \maltese \:  \: { \underline{ \underline{ \red{ \bf{Solution:}}}}}

we know that,

 \underline {\huge{ \boxed{ \rm{ \blue{B_v = B \: sin \: δ}}}}} \:  \bigstar

 \\  \\

 \qquad \hookrightarrow \rm \: B_v = 2.5 \times  {10}^{ - 4} \: sin  \: 60\degree

 \qquad \:  \tt \: sin  \: 60 \degree =  \frac{ \sqrt{3} }{2}

\qquad \hookrightarrow \rm \: B_v = \frac{2.5 \sqrt{3} }{2}  \times  {10}^{ - 4}  \\

Then ,

 \qquad \hookrightarrow \rm l \:  = 10 \: m

\qquad \hookrightarrow \rm \: V = 180km/ h

\qquad \hookrightarrow \rm \: V =  \frac{180 \times 5}{18} \:  \:  m/ s \\

\qquad \hookrightarrow \rm \: V =  50 \:  m/ s \\

 \underline{ \huge{ \boxed{ \rm{ \blue{|E|=B_v \: l \: v}}}}} \bigstar

 \qquad \looparrowright \rm \: |E| =  \frac{2.5 \sqrt{3} }{2}  \times  {10}^{ - 4}  \times 10 \times 50 \\

 \qquad \looparrowright \rm \: |E| = 1082 \times  {10}^{ - 4}V   \\

 \qquad \looparrowright \rm \: |E| = 108.2\times  {10}^{ - 3}V   \\

 \qquad \looparrowright {\rm{\orange {|E| = 108 \: mV}}}   \\

•°• The emf induced between the tips of the plane wings is 108 mV.

Similar questions