Math, asked by namrathanavya3669, 1 year ago

in a rectangle ABCD ab = 12 cm and angle BAC = 30 . calculate the lengths of side BC AND DIAGONAL AC​

Answers

Answered by Anonymous
224

\bold{\underline{\underline{Answer:}}}

Length of the diagonal = 24 cm

Length of side BC = 20 cm(approx.)

\bold{\underline{\underline{Step\:by\:step\:explanation :}}}

Given :

  • ABCD
  1. Length of side AB = 12 cm
  2. \angle{BAC} = 30 °

To find :

  • Length of side BC
  • Length of diagonal AC

Solution :

In a rectangle every angle is 90°

Therefore \bold{\angle{CBA}} = 90 °

Δ CBA is a right angled triangle (1)

Now we have the measure of angle BAC = 30 °

Let Side BC = x cm

•°• We can use the trigonometric ratio :

  • \bold{cos\theta} = \bold{\dfrac{Adjacent\:side}{Hypotenuse}}

Adjacent side = AB = 12 cm

Hypotenuse = AC = x cm

\bold{\theta} = 30°

Block in the values,

\rightarrow\bold{cos30\degree} = \bold{\dfrac{AB}{AC}}

\rightarrow\bold{cos30\degree} = \bold{\dfrac{1}{2}}

\rightarrow\bold{\dfrac{1}{2}} = \bold{\dfrac{12}{x}}

Cross multiplying,

\rightarrow\bold{x=\:12\times\:2}

\rightarrow\bold{x=24}

AC = x = 24 cm

AC = hypotenuse = diagonal of the rectangle = 24 cm

We have the,

  • length of the hypotenuse, AC which is 24 cm
  • Side AB = 12 cm

Now since we know that the ΔCBA is a right angled triangle (1) we can thereby apply Pythagoras theorem and solve for Side BC.

By Pythagoras theorem,

\bold{(Hypotenuse)^2\:=\:(Side1) ^2\:+\:(Side2)^2}

\rightarrow\bold{(AC)^2\:=\:(AB) ^2\:+\:(BC)^2}

Block in the values,

\rightarrow\bold{(24)^2\:=\:(12) ^2\:+\:(BC)^2}

\rightarrow\bold{576=144+(BC)^2}

\rightarrow\bold{576-144=(BC)^2}

\rightarrow\bold{432=(BC)^2}

\rightarrow\bold{\sqrt{432}=BC}

\rightarrow\bold{20.7846096908=BC}

° BC = 20 cm [APPROX.]

° Length of side BC = 20 cm

Attachments:
Similar questions