In a right angle ∆ABC, angle BAC=90°.segmentsAD,BE,CF are medians.prove that:2(AD SQUARE+BE SQUARE+CF SQUARE)=3BC SQUARE.
DhirajDeb58093:
pls help me urgent it is
Answers
Answered by
14
math]AE+EB=AB[/math]
2. [math]BD+DC=BC[/math]
3.[math] CF+FA=CA[/math]
adding 1 and 2 gives,
4. [math]AD + DC = AB + BC[/math]
adding 2 and 3 gives,
5. [math]BF+FA = BC + CA[/math]
adding 3 and 1 gives,
6. [math]CE+EB= CA + AB[/math]
Adding 4, 5 & 6 gives,
AD+BF+CE + DC+FA+EB = 2(AB+BC+CA)
AD+BF+CE + [math]\frac{1}{2}[/math](AB+BC+CA) = 2(AB+BC+CA)
(since D, E & F are the midpoints of AB, BC and CA)
but, from triangle law of vector addition we have,
[math]AB+BC+CA = 0[/math]
therefore,
[math]AD+BF+CE=0[/math]
Q.E.D
In the above proof I have used the notation that [math]AB[/math] represents [math]\vec{AB}[/math] just to avoid writing vector signs everywhere.
2. [math]BD+DC=BC[/math]
3.[math] CF+FA=CA[/math]
adding 1 and 2 gives,
4. [math]AD + DC = AB + BC[/math]
adding 2 and 3 gives,
5. [math]BF+FA = BC + CA[/math]
adding 3 and 1 gives,
6. [math]CE+EB= CA + AB[/math]
Adding 4, 5 & 6 gives,
AD+BF+CE + DC+FA+EB = 2(AB+BC+CA)
AD+BF+CE + [math]\frac{1}{2}[/math](AB+BC+CA) = 2(AB+BC+CA)
(since D, E & F are the midpoints of AB, BC and CA)
but, from triangle law of vector addition we have,
[math]AB+BC+CA = 0[/math]
therefore,
[math]AD+BF+CE=0[/math]
Q.E.D
In the above proof I have used the notation that [math]AB[/math] represents [math]\vec{AB}[/math] just to avoid writing vector signs everywhere.
Similar questions