Math, asked by rithanyaar, 3 months ago

In a right angled triangle ABC, right angled at B, given 15 cos A - 8 Sin A = 0,

1. Sin A + Cos A / 2 Cos A - Sin A = ?

2. 15 cot A + 17 sin A / 2 Cos A - Sin A = ?


It will be useful if you guys explain me with steps

Thank you !!
Have a nice day po !!
✌​

Answers

Answered by tennetiraj86
8

Step-by-step explanation:

Given:-

In a right angled triangle ABC, right angled at B, given 15 cos A - 8 Sin A = 0.

To find:-

Find the following:

1. Sin A + Cos A / 2 Cos A - Sin A = ?

2. 15 cot A + 17 sin A / 2 Cos A - Sin A = ?

Solution:-

Given that

15 cos A - 8 Sin A = 0

=> 15 Cos A = 8 Sin A

=> Cos A / Sin A = 8/15

=> Cot A = 8/15-------(1)

On squaring both sides

=> Cot^2 A = (8/15)^2

=> Cot^2 A = 64/225

Now

=> 1+Cot^2 A = 1+(64/225)

=> 1+ Cot^2 A = (225+64)/225

=> 1+Cot^2 A = 289/225

We know that

Cosec^2 A - Cot^2 A = 1

=> Cosec^2 A = 1+Cot^2 A

=> Cosec^2 A = 289/225

=> Cosec A = √(289/225)

=> Cosec A = 17/15

Sin A = 15/17---------(2)

On squaring both sides

=> Sin^2 A = 225/289

=> 1- Sin^2 A = 1-(225/289)

=> 1-Sin^2 A = (289-225)/289

=> 1- Sin^2 A = 64/289

We know that

Sin^2 A + Cos^2 A = 1

=> Cos^2 A = 64/289

=> Cos A =√(64/289)

Cos A = 8/17-----------(3)

I) The value of

(Sin A + Cos A) / (2 Cos A - Sin A )

=>[ (15/17)+(8/17)]/[2(8/17)-(15/17)]

=>[ (15+8)/17 ]/ [ (16-15)/17]

=> (23/17)/(1/17)

=> 23/1

=>23

(Sin A + Cos A) / (2 Cos A - Sin A ) = 23

2) The value of

(15 cot A + 17 sin A) / (2 Cos A - Sin A)

=> [15(8/15)+17(15/17)] /[ 2(8/17)-(15/17)]

=> [(15×8/15)+(17×15/17)] / [(2×8/17)-(15/17)]

=> (8+15)/ [(16/17)-(15/17)]

=> 23/[(16-15)/17]

=> 23/(1/17)

=> 23×(17/1)

=> 23×17

=> 391

(15 cot A + 17 sin A) / (2 Cos A - Sin A) = 391

Answer:-

The values of

i)(Sin A + Cos A) / (2 Cos A - Sin A ) = 23

ii)(15 cot A + 17 sin A) / (2 Cos A - Sin A) = 391

Used formulae:-

  • Cosec^2 A - Cot^2 A = 1

  • Sin^2 A + Cos^2 A = 1

  • Cot A = Cos A / Sin A

  • Cosec A = 1/ Sin A
Answered by arunpatodi18
0

Answer:

find:

Find the following:

1. Sin A+ Cos A/2 Cos A- Sin A = ?

2. 15 cot A+ 17 sin A/2 Cos A - Sin A = ?

Solution:

Given that

15 cos A-8 Sin A 0

=> 15 Cos A = 8 Sin A

=> Cos A/Sin A = 8/15

=> Cot A = 8/15-----(1)

On squaring both sides

=>Cot^2 A (8/15) 2

=> Cot^2 A 64/225

Now

1+Cot^2 A 1+(64/225)

=> 1+ Cot^2 A = (225+64)/225

> 1 => 1+Cot 2 A = 289/225

We know that

Cosec^2 A - Com^2 A=1

=> Cosec^2 A=1+Cot^2 A

=> Cosec^2 A = 289/225

Cosec A=√(289/225)

=> Cosec A = 17/15

Sin A 15/17-------(2)

On squaring both sides

=> Sin^2 A = 225/289

=> 1- Sin^2 A1-(225/289)

=> 1-Sin^2 A = (289-225)/289

=>1- Sin 2 A = 64/289

We know that

Sin^2 A+ Cos^2 A = 1

=> Cos^2 A 64/289)

=> Cos A =√(64/289)

Cos A8/17 (3)

1) The value of

(Sin A+ Cos A) / (2 Cos A - Sin A)

=>(15/17)+(8/17)]/[2(8/17)-(15/17)]

(15+8)/17 (16-15)/17]

=>(23/17)/(1/17)

=> 23/1

=>23

(Sin A+ Cos A) / (2 Cos A Sin A ) = 23

2) The value of

(15 cot A+ 17 sin A) / (2 Cos A - Sin A)

=> [15(8/15)+17(15/17)] /[2(8/17)-(15/17)]

=> [(15-8/15)+(17*15/17)] / [(2*8/17)-(15/17)]

(8+15)/ [(16/17)-(15/17)]

=> 23/[(16-15)/17]

=> 23/(1/17)

=> 23×(17/1)

=> 23×17

=> 391

(15 cot A+ 17 sin A) / (2 Cos A - Sin A) = 391

Answer:

The values of

i)(Sin A+ Cos A) / (2 Cos A - Sin A ) = 23

ii)(15 cot A + 17 sin A) / (2 Cos A- Sin A) = 391

Used formulae:

. Cosec^2 A - Cot^2 A = 1

• Sin^2 A+ Cos^2 A = 1

• Cot A = Cos A / Sin A

• Cosec A = 1/ Sin A

Step-by-step explanation:

pls mark brainliest

Similar questions