Math, asked by aryanpimpalkar67, 10 hours ago

In a right angled triangle, the side opposite to the right angle is 10 cm .One of the perpendicular side is 6cm .The area of this triangle is ____sq.c ​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

  • In a right angled triangle, the side opposite to the right angle is 10 cm.

  • One of the perpendicular side is 6cm.

Let assume that

  • The required triangle be ABC right angled at B such that, AC = 10 cm and BC = 6 cm.

Now, In right triangle ABC

Using Pythagoras Theorem, we have

\rm :\longmapsto\: {AC}^{2} =  {AB}^{2}  +  {BC}^{2}

\rm :\longmapsto\: {10}^{2} =  {AB}^{2}  +  {6}^{2}

\rm :\longmapsto\: 100 =  {AB}^{2}  +  36

\rm :\longmapsto\: 100 - 36 =  {AB}^{2}

\rm :\longmapsto\: 64 =  {AB}^{2}

\rm :\longmapsto\:  {8}^{2}  =  {AB}^{2}

\rm\implies \:AB = 8 \: cm

Now,

\rm :\longmapsto\:Area_{(\triangle ABC)} \:  =  \: \dfrac{1}{2} \times AB \times BC

\rm :\longmapsto\:Area_{(\triangle ABC)} \:  =  \: \dfrac{1}{2} \times 8 \times 6

\rm :\longmapsto\:Area_{(\triangle ABC)} \:  =  \: 4 \times 6

\rm :\longmapsto\: \boxed{\tt{ \:  \:  \:  \: Area_{(\triangle ABC)} \:  =  \: 24 \:  {cm}^{2}  \:  \:  \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions