Math, asked by rishabchandrago5041, 1 year ago

In a right triangle ABC right angled at C. P and Q are points on sides AC and CB respectively which divide these sides in the ratio of 2 : 1.
Prove that (i) 9AQ² = 9AC² + 4BC²
(ii) 9BP² = 9BC² + 4AC²
(iii) 9(AQ² + BP²) = 13AB²

Answers

Answered by mysticd
19
In ∆ACB , <C = 90°

P , Q are on AC , CB respectively

i ) Given ,

AQ dividing CB in the ratio 2 : 1

then CQ : QB = 2 : 1 ,

CQ : BC = 2 : 3

CQ = 2BC/3

In ∆ACQ , <C = 90°

AQ² = AC² + CQ²

[ By Phythogarian theorem ]

AQ² = AC² + ( 2BC/3 )²

= AC² + 4BC²/9

= ( 9AC² + 4BC² )/9

9AC² = 9AC² + 4BC² ----( 1 )
__________________________

ii ) Given ,

P divides CA in ratio 2 : 1

CP : PA = 2 : 1

=> CP : CA = 2 : 3

=> CP = 2AC/3

In ∆PCB ,

BP² = BC² + PC²

[ By Phythogarian theorem ]

BP² = BC² + ( 2AC/3 )²

= BC² + 4AC²/9

= ( 9BC² + 4AC² )/9

9BP² = 9BC² + 4AC²------( 2 )
_________________________

iii ) By adding ( 1 ) and ( 2 ) , we get

9( AQ² + BP² ) = 13AC² + 13BC²----( 3 )

But in ∆ACB ,

AB² = AC² + BC² ---( 4 )

[ By Phythogarian theorem ]

substitute ( 4 ) in ( 3 ) , we get

9( AQ² + BP² ) = 13AB²

Hence proved.

I hope this helps you.

: )




Attachments:
Answered by deeptanuneogi
3

Answer:

Step-by-step explanation:

In ∆ACB , <C = 90°

P , Q are on AC , CB respectively

i ) Given ,

AQ dividing CB in the ratio 2 : 1

then CQ : QB = 2 : 1 ,

CQ : BC = 2 : 3

CQ = 2BC/3

In ∆ACQ , <C = 90°

AQ² = AC² + CQ²

[ By Phythogarian theorem ]

AQ² = AC² + ( 2BC/3 )²

= AC² + 4BC²/9

= ( 9AC² + 4BC² )/9

9AC² = 9AC² + 4BC² ----( 1 )

__________________________

ii ) Given ,

P divides CA in ratio 2 : 1

CP : PA = 2 : 1

=> CP : CA = 2 : 3

=> CP = 2AC/3

In ∆PCB ,

BP² = BC² + PC²

[ By Phythogarian theorem ]

BP² = BC² + ( 2AC/3 )²

= BC² + 4AC²/9

= ( 9BC² + 4AC² )/9

9BP² = 9BC² + 4AC²------( 2 )

_________________________

iii ) By adding ( 1 ) and ( 2 ) , we get

9( AQ² + BP² ) = 13AC² + 13BC²----( 3 )

But in ∆ACB ,

AB² = AC² + BC² ---( 4 )

[ By Phythogarian theorem ]

substitute ( 4 ) in ( 3 ) , we get

9( AQ² + BP² ) = 13AB²

Hence proved.

Take care.

Maintain lockdown

Good bye

Similar questions