in a right triangle ABC right angled at C,P and Q are the points on sides AB and AC respectively which divide these sides in the ratio 2:1. prove that
(i) 9AQ^2 = 9AC^2 + 4BC^2
(iI) 9BP^2 = 9BC^2 + 4AC^2
plsssss some1 solve this asaaap
Answers
Answered by
3
Step-by-step explanation:
Given : ΔABC is a right angle at C. P and Q are points on CA and CB respectively.
CP: PA = 2:1 and CQ: QB = 2:1
To prove :
1) 9AQ2 = 9AC2 + 4BC2
(2) 9BP2 = 9BC2 + 4AC2
(3) 9(AQ2 + BP2) = 13AB2
Proof : In a right angle ΔACQ,
AQ2 = AC2 + CQ2 [ CQ / QB = 2 /1 ,CQ / ( BC – CQ) = 2 / 1,3CQ = 2BC, CQ = 2BC / 3 ]
⇒ AQ2 = AC2 + (2BC / 3)2
⇒ AQ2 = AC2 + 4BC2 / 9
9 AQ2 = 9AC2 + 4BC2 . ---------(1)
Similarly in a right angle ΔBCP we get
9BP2 = 9BC2 + 4AC2 ---------(2)
Adding (1) and (2), we get
⇒ 9AQ2 + 9BP2 = 9AC2 + 4BC2 + 9BC2 + 4AC2
⇒ 9(AQ 2 + BP 2 ) = 13AC 2 + 13BC 2
⇒ 9(AQ 2 + BP 2 ) = 13(AC 2 + BC 2 ) = 13AB 2 (∆ABC is right angle C then AC 2 + BC 2 = AB 2 )
Attachments:
Anonymous:
hope its help you?
Similar questions