Math, asked by Creepyboy95, 3 months ago

In a semi circle AC = BD = 7 cm and AB = CD = 1.75 cm . Find the shaded region​

Answers

Answered by VinCus
38

Given:-

▪︎AC = BD

▪︎AC = 7 cm , BD = 7 cm

▪︎AB = CD

▪︎AB = 1.75 cm , CD = 1.75 cm

To Find:-

▪︎Shaded region of the Semi circle

Solution:-

▪︎Here they given that AC and BD are equal and their value is 7 cm and AB and CD are equal and their value is 1.75 cm.

▪︎To find the shaded region of the Semi circle, Using formula.

 \star { \underline{ \boxed{ \sf{}  =  2 \left(Area \: of \:the \: semi \: circle \: of \: radius \:  \frac{7}{2} \: cm \right)  -2 \left(Area \: of \:the \: semi \: circle \: of \: radius \:  \frac{7}{8} \: cm \right) }}} \star

  \\ \longrightarrow \tt \: 2 \left( \frac{1}{2}  \times  \frac{22}{7}  \times  \frac{7}{2}  \times \frac{7}{2}  \right) - 2\left( \frac{1}{2}  \times  \frac{22}{7}  \times  \frac{7}{4}  \times \frac{7}{4}  \right)

 \\  \longrightarrow  \tt\left( \frac{77}{2}  -  \frac{77}{8}  \right)

 \\  \longrightarrow  \tt \frac{77}{2}   \left(1 - \frac{1}{4}  \right)

 \\  \longrightarrow  \tt \frac{77}{2}  \times \frac{3}{4}

 \\  \longrightarrow  \tt \frac{231}{8}

 \\  \tt { = 28.87 \:  {cm}^{2} }

▪︎Hence, The area of the shaded region of the Semi circle is 28.87 cm²


Berseria: Nyc.. Keep Up the Good work.. :)
opmaddy07: Nice as always!
Similar questions