Math, asked by tanvvi4985, 8 months ago

In a shop, 380 people buy socks, 150 people buy shoes and 200 people buy belt. If there are total 580 people who bought either socks or shoes or belt and only 30 people bought all the three things? So how many people bought exactly two
Thing. Venn diagram for this

Answers

Answered by apexabroadstu
0

Answer:

90

step by step explanation:

Let S, H and B represent the set of number of people bought socks, shoes and belt respectively.

So, n(S) = 380, n (H) = 150, n (B) = 200

n (S∪H∪B) =580, n (S∩H∩B) =30

Therefore, n (S ∪ H ∪ B ) = n ( S ) + n ( H )+ n ( B ) – n (S ∩ H ) – n (H ∩ B ) – n (B ∩ S ) + n ( S ∩ H ∩ B ),

Now, we will put values given in the formula,

580 = 380 + 150 + 200 - n (S ∩ H) – n (H ∩ B) – n (B ∩ S) + 30

This gives that,

n (S ∩ H) + n (H ∩ B) + n (B ∩ S) =180

Let, n (S ∩ H ∩ B) = a

As we can see from the Venn diagram,

n (S ∩ H)-a + n (H ∩ B)-a + n (B ∩ S)-a=the required number

n (S ∩ H) + n (H ∩ B) + n (B ∩ S)-3a

180 – 90 = 90

Hence, 90 people are there who bought exactly two things.

hope it will help u

plz follow me

plz mark my ans as brainliest

Similar questions