Math, asked by naveen8096612419, 10 months ago

in a triangle ABC A=(5,8)D is the midpoint of the side BC d=(2,-1).find the centroid of triangle ABC ​

Answers

Answered by MaheswariS
7

\textbf{Concept:}

\text{The centroid of triangle divides each median in the ratio 2:1}

\textbf{Formula used:}

\boxed{\begin{minipage}{8cm}\textbf{The coordinates of the point which divides the line segment joining} \bf(x_1,y_1)\:\textbf{and}\bf(x_2,y_2)\textbf{internally in the ratio m:n is}\\\\\bf(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})\end{minipage}}

\textbf{Given:}

\text{In $\triangle$ABC, A(5,8) and}

\text{The midpoint of BC, D(2,-1)}

\text{Let G be the centroid of $\triangle$ABC}

\text{Then, G divides the median AD in the ratio 2:1}

\implies\text{G is}\;(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})

\implies\text{G is}\;(\frac{2(2)+1(5)}{2+1},\frac{2(-1)+(8)}{2+1})

\implies\text{G is}\;(\frac{9}{3},\frac{6}{3})

\implies\textbf{G is}\bf(3,2)

Find more:

Find the third vertex of a triangle, if two of its vertices are at (-3, 1) and (0, -2) and the centroid is at the origin.

https://brainly.in/question/15938718

Similar questions