in a triangle ABC,a/tanA+b/tanB+c/tanC=
with explanation
Answers
Answer:
If A+B+C=npi (n being an integer). Show that tanA+tanB+tanC=tanA tanB tanC. Prove that a triangle ABC is equilateral if and only if tanA+tanB+tanC=3sqrt(3). ... In right angled triangle ABC, right angled at C, show that tanA+tanB=(c^2)/(ab).
Answer:
∆ABC is an equilateral triangle.
Given:
tanA/a= tanB/b= tanC/c----------------(1)
Step-by-step explanation:
In ∆ABC ,
By sine rule in ∆ABC , we have
a/sinA=b/sinB=c/sinC= k(let).
∴Putting a=k sin A , b = k sin B and c=k sin C in eq. (1)
⇒tanA/(ksinA)= tanB/(ksinB)= tanC/(ksinC)
⇒ (sinA/cosA)/sinA=(sinB/cosB)/sinB = (sinC/cosC)/sinC
⇒ 1/cosA = 1/cosB =1/cosC.
⇒ secA= secB=secC
⇒ A = B = C = x(let)
But A+B+C=180° (Triangle sum property)
x+x+x=180°
3x=180° ⇒x= 180°/3=60°
∴ A = B = C = 60°
Thus , ∆ABC is an equilateral triangle.
#SPJ3