In a triangle abc angle c=3,angle b=2(angle a+angle b). find the three angles ?
Answers
First of all, the correct ques is
angC= 3angB = 2(angA+angB)
ang C = 2 (ang A+angB)
we know in triangle ABC
A+B+C=180•
A+B+2(A+B)=180•
3(A+B)=180•
A+B=60•.....eqn 1
Now we r given
3B=2(A+B)
3B=2A+2B
B=2A...eqn2
putting this in eqn 1
A+2A=60•
3A=60•
A=20•
From eqn 2
B=2*20
B=40•
A+B+C=180
20+40+C= 180
60+C=180
C=120•
Answer:
Step-by-step explanation:
Solution :-
Let ∠A = x° and ∠B = y°
Then,
∠C = 3∠B = (3y°)
Now,
∠C = 2(∠A + ∠B)
⇒ 3y = 2(x + y)
⇒ 3y = 2x + 2y
⇒ 2x - y = 0 .... (i)
We know that the sum of the angles of a triangle is 180°.
Therefore,
∠A + ∠B + ∠C = 180°
⇒ x + y + 3y = 180
⇒ x + 4y = 180° .....(ii)
On multiplying (i) by 4 and adding the result with (ii), we get
⇒ 8x + x = 180
⇒ 9x = 180
⇒ x = 180/9
⇒ x = 20
Putting x's value in Eq (i), we get
⇒ 2x - y = 0
⇒ 2(20) - y = 0
⇒ 40 - y = 0
⇒ y = 40
Hence, ∠A = x = 20°
∠B = y = 40°
∠C = 3y = 3(40) = 80°