Math, asked by pandeyrupam317, 2 months ago

In a triangle ABC C= 90° and tan A =1√3 find the value of : (¹) (sin A cos B + cos A sin B ) 2 (cos A cos B -sin sin A sin B )​

Answers

Answered by NotThareesh
0

Answer:

0

Step-by-step explanation:

tan A = 1/\sqrt{3}

We know that tanA = sinA/cosA

Let AC = \sqrt{3x} and BC = 1x

Applying the Pythagoras Theorem,

AC^{2} + BC^{2} = AB^{2}

(\sqrt{3}x)^{2} + x^{2} = AB^{2}

3x^{2} + x^{2}  = AB^{2}

4x^{2} = AB^{2}

2x = AB

sinA = 1/2\\\\cosB = sinA = 1/2\\\\cosA = \sqrt{3}/2\\\\sinB = cosA =  \sqrt{3}/2

Breaking the sum into two parts, we get

sinA cosB + cosA sinB = (1/2)^{2} + (\sqrt{3}/2)^{2} = 1/4 + 3/4 = 4/4 = 1

2(cosA cosB - sinA sinB) = 2[(\sqrt{3}/2 * 1/2) -  (1/2 * \sqrt{3}/2)] = 2(\sqrt{3}/4 - \sqrt{3}/4) = 0

∴ Multiplying the above two parts, we obtain 0

Answered by TYKE
44

\overline{\underline{\boxed{\sf GIVEN \darr}}}

In a triangle ABC C= 90° and tan A =1√3 find the value of : (¹) (sin A cos B + cos A sin B ) 2 (cos A cos B -sin sin A sin B )

\overline{\underline{\boxed{\sf HOW \:  TO  \: DO \darr}}}

Step 1 : First we will take any constant multiple

Step 2 : Then we wil put the values of tan A with the multiple

Step 3 : Then we need to apply Pythagoras theorem to find the Hypotenuse

Step 4 : Then applying the formula to get sin and cos we will put the values

\overline{\underline{\boxed{\sf SOLUTION \darr}}}

Given that :

tan A = 1/√3

Let the constant multiple be k

tan A = Opposite/Adjacent

According to the given picture

tan A = BC/AC

So,

  • tan A = 1k/√3k

  • tan A = 1/√3

Now to get the Pythagoras Theorem :

In ∆ACB , ∠C = 90°

(Hypotentuse)² = (Perpendicular)² + (Base)²

  • (AB)² = (BC)² + (AC)²

  • (AB)² = (1k)² + (√3k)²

  • (AB)² = 1k² + 3k²

  • (AB)² = 4k²

  • AB = √4k²

  • AB = 2k

Now, according to the condition which is given is :

1) sin A cos B + cos A sin B

So,

sin A = Perpendicular/Hypotentuse = BC/AB = 1k/2k = 1/2

cos B = Base/Hypotentuse = AC/AB = √3k/2k = √3/2

cos A = Base/Hypotentuse = BC/AB = 1k/2k = 1/2

sin B = Perpendicular/Hypotentuse = AC/AB = √3/2

Hence, putting all the values we get

  • 1/2 × √3/2 + 1/2 × √3/2

  • √3/4 + √3/4

  • 2√3/4

  • √3/2

Hence, the answer is 3/2

2) cos A cos B - sin A sin B

cos A = Base/Hypotentuse = BC/AB = 1k/2k = 1/2

cos B = Base/Hypotentuse = AC/AB = √3k/2k = √3/2

sin A = Perpendicular/Hypotentuse = BC/AB = 1k/2k = 1/2

sin B = Perpendicular/Hypotentuse = AC/AB = √3/2

So, putting the values we get

  • 1/2 × √3/2 - 1/2 × √3/2

  • √3/4 - √3/4

  • 0

Hence, the answer is 0

Attachments:
Similar questions