In a triangle ABC C= 90° and tan A =1√3 find the value of : (¹) (sin A cos B + cos A sin B ) 2 (cos A cos B -sin sin A sin B )
Answers
Answer:
0
Step-by-step explanation:
We know that
Let and
Applying the Pythagoras Theorem,
Breaking the sum into two parts, we get
∴ Multiplying the above two parts, we obtain 0
In a triangle ABC C= 90° and tan A =1√3 find the value of : (¹) (sin A cos B + cos A sin B ) 2 (cos A cos B -sin sin A sin B )
Step 1 : First we will take any constant multiple
Step 2 : Then we wil put the values of tan A with the multiple
Step 3 : Then we need to apply Pythagoras theorem to find the Hypotenuse
Step 4 : Then applying the formula to get sin and cos we will put the values
Given that :
tan A = 1/√3
Let the constant multiple be k
tan A = Opposite/Adjacent
According to the given picture
tan A = BC/AC
So,
- tan A = 1k/√3k
- tan A = 1/√3
Now to get the Pythagoras Theorem :
In ∆ACB , ∠C = 90°
(Hypotentuse)² = (Perpendicular)² + (Base)²
- (AB)² = (BC)² + (AC)²
- (AB)² = (1k)² + (√3k)²
- (AB)² = 1k² + 3k²
- (AB)² = 4k²
- AB = √4k²
- AB = 2k
Now, according to the condition which is given is :
1) sin A cos B + cos A sin B
So,
sin A = Perpendicular/Hypotentuse = BC/AB = 1k/2k = 1/2
cos B = Base/Hypotentuse = AC/AB = √3k/2k = √3/2
cos A = Base/Hypotentuse = BC/AB = 1k/2k = 1/2
sin B = Perpendicular/Hypotentuse = AC/AB = √3/2
Hence, putting all the values we get
- 1/2 × √3/2 + 1/2 × √3/2
- √3/4 + √3/4
- 2√3/4
- √3/2
Hence, the answer is √3/2
2) cos A cos B - sin A sin B
cos A = Base/Hypotentuse = BC/AB = 1k/2k = 1/2
cos B = Base/Hypotentuse = AC/AB = √3k/2k = √3/2
sin A = Perpendicular/Hypotentuse = BC/AB = 1k/2k = 1/2
sin B = Perpendicular/Hypotentuse = AC/AB = √3/2
So, putting the values we get
- 1/2 × √3/2 - 1/2 × √3/2
- √3/4 - √3/4
- 0
Hence, the answer is 0