In a triangle ABC, if AB=AC and BC is produced to D such that ∠ACD=100° , then calculate ∠A.
Answers
Answered by
3
➨We have ,
→ ZACD + ZACB = 180 ° [ Linear Pair ]
→ 100 ° + ZACB = 180 °
→ ZACB = 180 ° - 100 °
→ ZACB = 80 °
➨From ( i ) & ( ii ) ,
➨ We get
➨ Angle ZABC = Angle ZACB = 80 °
➨Now ,
→ ZABC + ZACB + ZA = 180º .... [ Sum of the 3 interior angles of a triangle is 180° ]
→ Substituting the values of ZABC & ZACB ,
➨ We get
→ 80 ° + 80 ° + A = 180 °
→ 160 ° + ZA = 180 °
→ ZA = 180 ° - 160 °
→ ZA = 20 °
Thus , the measure of Angle ‘A’ is 20 °
Answered by
1
Answer:
20°
Step-by-step explanation:
In ∆ABC, AB = AC
∴ ∠B = ∠C
But Ext. ∠ACD = ∠A + ∠B
∠ACB + ∠ACD = 180° (Linear pair)
∴ ∠ACB + 100° = 180°
⇒ ∠ACB = 180°-100° = 80°
∴ ∠B = ∠ACD = 80°
But ∠A + ∠B 4- ∠C = 180°
∴ ∠A + 80° + 80° = 180°
⇒∠A+ 160°= 180°
∴ ∠A= 180°- 160° = 20°
Similar questions