In a triangle ABC, IF sinA/sin C=sin(A-B) /sin(B-C) ; Prove that a^2, b^2, c^2 are in AP.
Answers
Answered by
112
in a triangle, A+B+C=180
sin A/sinC=sin(180-(B+C))/sin(180-(A+B))
sin(B+C)/sin(A+B) =sin(A-B)/sin(B-C)
sin²B-sin²C=sin²A-sin²B
2sin²B=sin²A+sin²C
we know that a=2RsinA,b=2RsinB,c=2RsinC
2(b/2R)²=(a/2R)²+(c/2R)²
2b²=a²+c²
so a²,b²,c² are in A.p .....
I hope this will help u;)
sin A/sinC=sin(180-(B+C))/sin(180-(A+B))
sin(B+C)/sin(A+B) =sin(A-B)/sin(B-C)
sin²B-sin²C=sin²A-sin²B
2sin²B=sin²A+sin²C
we know that a=2RsinA,b=2RsinB,c=2RsinC
2(b/2R)²=(a/2R)²+(c/2R)²
2b²=a²+c²
so a²,b²,c² are in A.p .....
I hope this will help u;)
Answered by
10
Answer:
hope it helps you friend
Attachments:
Similar questions