Math, asked by RYTHAM300, 11 months ago

In a triangle abc, if (tan a/2)(tan c/2)=1/3 then least value of b is

Answers

Answered by ayushkumar25july
4

Step-by-step explanation:

In a triangle

. If

then the least value of

(b) is b9/7

Answered by fairyepsilon7532
0

The question is,

If ABC is a triangle such that

 \tan( \frac{a}{2} ) . \tan( \frac{c}{2} )  =  \frac{1}{3}

and a.c=4,Find the least value that b can take

The least value that b can take is 2

Step-by-step explanation:

 \tan( \frac{a}{2} )  =  \sqrt{ \frac{(s - b)(s - c)}{s( s - a)} }  \\  \tan( \frac{c}{2} )  =  \sqrt{ \frac{(s - a)(s - b)}{s( s - c)} }

such that

s =  \frac{a + b + c}{2}

therefore \\  \tan( \frac{a}{2} ) . \tan( \frac{c}{2} )  =  \\      \sqrt{ \frac{(s - b)(s - c)}{s( s - a)} } .   \sqrt{ \frac{(s - a)(s - b)}{s( s - c)} }  \\

=       \sqrt{ \frac{(s - b)(s - c)(s - a)(s - b)}{s( s - a)s( s - c)} }   \\ =   \sqrt{ \frac{ {(s - b)}^{2} }{ {s}^{2} } }   \\

=\frac{(s - b)}{s}

3(s - b) = s \: implies \: 3s - 3b = s \\ rearranging \: we \: have \:  \\ 2s = 3b \\ </p><p>as \: s =  \frac{a + b +c }{2}

a + b + c = 3b \\ a + c = 2b \\

-----equation (1)

we \: know \: that \:  \\ arithemetic \: mean (am)\geqslant geomteric \: mean(gm)</p><p> \\ then \: am =  \frac{a + c}{2}  \\ and \: gm =  \sqrt{ac}

 \frac{a + c}{2}  \geqslant  \sqrt{ac \\ }  \\

using equation 1 in equation above ,we have

2b \geqslant  \sqrt{4}  \\ b \geqslant 2

then the least value that b can have is 2.

DEFINITIONS

 \tan( \frac{a}{2} )  =  \\      \sqrt{ \frac{(s - b)(s - c)}{s( s - a)} } .\\ \tan( \frac{b}{2} )  =  \\      \sqrt{ \frac{(s - a)(s - c)}{s( s - b)} } . \\ \tan( \frac{c}{2} )  =  \\      \sqrt{ \frac{(s - a)(s - b)}{s( s - c)} }

s =  \frac{a + b + c}{2}

 \\ arithemetic \: mean (am)\geqslant geomteric \: mean(gm)

Some related questions you can refer

In ∆ABC right angled at B, if tan A= √3, then cos A cos C-sin A sin C =

https://brainly.in/question/47442766

if tan(theta/2)=½ tan(theta/3)=⅓,then find the value of theta

https://brainly.in/textbook-solutions/q-1-2-1-3-value-6-b-1

#SPJ3

Similar questions