In a triangle ABC, prove that:
(i) a sin (B-C) + b sin (C - A) + C sin (A-B) = 0
Answers
PROOF:
sin A/a = sin B/b = sin C/c = a constant k (Law of sines)
∴ sin A/a = k
sin A = ak
Similarly, sin B/b = k
sin B = bk
Similarly, sin C/c = k
sin C = ck
a sin (B - C) = a (sin B cos C - cos B sin C)
= a (bk cos C - cos B ck) [Substituting sin B = bk, sin C = ck]
= ak (b cos C - c cos B)
b sin (C - A) = b (sin C cos A - cos C sin A)
= b (ck cos A - cos C ak) [Substituting sin C = ck, sin A = ak]
=bk (c cos A - a cos C)
c sin (A - B) = c (sin A cos B - cos A sin B)
= c (ak cos B - cos A bk) [Substituting sin A = ak, sin B = bk]
= ck (a cos B - b cos A)
∴ L.H.S. = a sin (B - C) + b sin (C - A) + c sin (A - B)
= ak (b cos C - c cos B) + bk (c cos A - a cos C) + ck (a cos B - b cos A)
= abk cos C - ack cos B + bck cos A - abk cos C + ack cos B - bck cos A
= abk cos C - abk cos C + ack cos B - ack cos B + bck cos A - bck cos A
= 0
= R.H.S.
HENCE PROVED