Math, asked by Anonymous, 4 months ago

In a triangle ABC, right angled at A, if AB = 5, AC = 12 and BC = 13, find sinB, cosC and tanB.​

Answers

Answered by Anonymous
18

\mathtt{\bf{\large{\underline {\red{Given \: Question}}}}}

In a triangle ABC, right angled at A, if AB = 5, AC = 12 and BC = 13, find sinB, cosC and tanB.

\mathtt{\bf{\large{\underline {\red{Required\: Answer}}}}}

★ \: sinB =  \frac{12}{13} \\   \\ ★ \: tanB =  \frac{12}{5}   \\ \\★ \:  cosC =  \frac{12}{13}

\mathtt{\bf{\large{\underline {\red{Explanation:-}}}}}

\mathtt{\bf{\large{\underline {\blue{Given:-}}}}}

AB = 5

AC = 12

BC = 13

\mathtt{\bf{\large{\underline {\blue{To \: find:-}}}}}

☞  \: sinB \\☞   \: tanB \\ ☞ \:  cosC

\mathtt{\bf{\large{\underline {\blue{Solution:-}}}}}

\color{purple}{With \:   \: reference \:  \:  to \:  ∠B, }

• Perpendicular ⇨ CA⇨12

• Base ⇨AB⇨5

• Hypotenuse ⇨BC⇨13

\color{purple}{So,}

⟾ \:  \: sinB =  \frac{perpendicular}{hypotenuse}  =  \frac{CA}{BC} =  \frac{12}{13}  \\  \\⟾ \:  \:  tanB=  \frac{perpendicular}{base} = \frac{CA}{AB}  =  \frac{12}{5}

\color{purple}{With  \:  \: reference  \:  \: to \:  \:  ∠C, }

• Perpendicular ⇨ BA⇨5

• Base ⇨CA ⇨ 12

• Hypotenuse ⇨CB⇨13

\color{purple}{So, }

⟾ \:  \: cosC =  \frac{base}{hypotenuse}  =  \frac{CA}{CB}  =  \frac{12}{13}  \\

\fbox{Additional Information}

➻  \: sin θ \:  =  \frac{perpendicular}{hypotenuse}  \\ \\➻ \: cos θ =  \frac{base  }{hypotenuse}  \\  \\ ➻ \: tan θ \:  =  \frac{perpendicular}{base}

Attachments:
Answered by blackia13yaar
0

sin= 5/12

cos = 13/5

tan = 5/13

Similar questions