Math, asked by yashanilwaghole22, 5 hours ago

In a triangle ABC,right angled at B,if Ab=4cm and BC=3cm,find all six trigonometric ratios of angle A​

Answers

Answered by ta4863371
1

Answer:

Appropriate Question :-

In triangle ABC, is right angled at B. If AC = 5cm, BC = 3cm and AB = 4cm. Find all the six trigonometric identities related to angle A.

Answer :-

★ FIGURE

Refer the attachment.

Firstly, we know, There are six trigonometric identities :-

\sf{sine (sin \: A ) = \dfrac{Perpendicular}{Hypotenuse} \implies \dfrac{BC}{AC}}sine(sinA)=

Hypotenuse

Perpendicular

AC

BC

\sf{cosine (cos \: A) = \dfrac{Base}{Hypotenuse} \implies \dfrac{AB}{AC}}cosine(cosA)=

Hypotenuse

Base

AC

AB

\sf{tangent (tan \: A) = \dfrac{Perpendicular}{Base} \implies \dfrac{BC}{AB}}tangent(tanA)=

Base

Perpendicular

AB

BC

\sf{cotangent (cot \: A) = \dfrac{Base}{Perpendicular} \implies \dfrac{AB}{BC}}cotangent(cotA)=

Perpendicular

Base

BC

AB

\sf{secant (sec \: A) = \dfrac{Hypotenuse}{Base} \implies \dfrac{AC}{AB}}secant(secA)=

Base

Hypotenuse

AB

AC

\sf{cosecant (cosec \: A ) = \dfrac{Hypotenuse}{Perpendicular} \implies \dfrac{AC}{BC}}cosecant(cosecA)=

Perpendicular

Hypotenuse

BC

AC

We have, Given

AC = 5cm

BC = 3cm

AB = 4cm

\begin{gathered} \\ \end{gathered}

∴ According the question,

\begin{gathered} \\ \\ \end{gathered}

sine ( sin A )

\sf{ \longrightarrow \: sine (sin \: A ) = \dfrac{BC}{AC}}⟶sine(sinA)=

AC

BC

\sf{ \longrightarrow \: \dfrac{BC}{AC}}⟶

AC

BC

\sf{ \longrightarrow \: \dfrac{3}{5} \: \: \: \: \bigstar}⟶

5

3

\begin{gathered} \\ \end{gathered}

cosine ( cos A )

\sf{ \longrightarrow \: cosine (cos \: A ) = \dfrac{AB}{AC}}⟶cosine(cosA)=

AC

AB

\sf{ \longrightarrow \: \dfrac{AB}{AC}}⟶

AC

AB

\sf{ \longrightarrow \: \dfrac{4}{5} \: \: \: \: \bigstar}⟶

5

4

\begin{gathered} \\ \end{gathered}

tangent ( tan A )

\sf{ \longrightarrow \: tangent (tan \: A) = \dfrac{BC}{AB}}⟶tangent(tanA)=

AB

BC

\sf{ \longrightarrow \: \dfrac{BC}{AB}}⟶

AB

BC

\sf{ \longrightarrow \: \dfrac{3}{4} \: \: \: \: \bigstar}⟶

4

3

\begin{gathered} \\ \end{gathered}

cotangent ( cot A )

\sf{ \longrightarrow \: cotangent (cot \: A) = \dfrac{AB}{BC}}⟶cotangent(cotA)=

BC

AB

\sf{ \longrightarrow \: \dfrac{AB}{BC}}⟶

BC

AB

\sf{ \longrightarrow \: \dfrac{4}{3} \: \: \: \: \bigstar}⟶

3

4

\begin{gathered} \\ \end{gathered}

secant ( sec A )

\sf{ \longrightarrow \: secant (sec \: A) = \dfrac{AC}{AB}}⟶secant(secA)=

AB

AC

\sf{ \longrightarrow \: \dfrac{AC}{AB}}⟶

AB

AC

\sf{ \longrightarrow \: \dfrac{5}{4} \: \: \: \: \bigstar}⟶

4

5

\begin{gathered} \\ \end{gathered}

cosecant ( cosec A )

\sf{ \longrightarrow \: cosecant (cosec \: A ) = \dfrac{AC}{BC}}⟶cosecant(cosecA)=

BC

AC

\sf{ \longrightarrow \: \dfrac{AC}{BC}}⟶

BC

AC

\sf{ \longrightarrow \: \dfrac{5}{3} \: \: \: \: \bigstar}⟶

3

5

Similar questions