Math, asked by jaisapra8, 10 months ago

in a triangle abc right angled at b if AB is 12 and BC is 5 find all the six trignometric ratios of angle. a​

Answers

Answered by MANTUMEHER
2

Step-by-step explanation:

in \: the \: triangle \: b \: is \: right \: angle \: so \: for \: the \: angle \: a \:  \\ ab = base(b) = 12 \\ bc = perpendicular(p) = 5 \: and \: the \:  \\ ac = heipotenous(h) \\ so \: h =  \sqrt{ {p}^{2} +  {b}^{2}  }  =  \sqrt{ {12}^{2}  +  {5}^{2} }  \\  =  \sqrt{144 + 25}  =  \sqrt{169}  = 13 \\ so \: all \: the \: trigonometric \: eqs \: are \\  \sin( \alpha )  =  \frac{p}{h}  =  \frac{5}{13}  \\  \cos( \alpha )  =  \frac{b}{h}  =  \frac{12}{13}  \\  \tan( \alpha )  =  \frac{p}{b}  =  \frac{5}{12}  \\  \cot( \alpha )  =  \frac{b}{p}  =  \frac{12}{5}  \\  \sec( \alpha )  =  \frac{h}{b}  =  \frac{13}{12}  \\  \csc( \alpha )  =  \frac{h}{p}  =  \frac{13}{5}

Answered by Ᏸυէէєɾϝɭყ
2

in \: the \: triangle \: b \: is \: right \: angle \: so \: for \: the \: angle \: a \:  \\ ab = base(b) = 12 \\ bc = perpendicular(p) = 5 \: and \: the \:  \\ ac = heipotenous(h) \\ so \: h =  \sqrt{ {p}^{2} +  {b}^{2}  }  =  \sqrt{ {12}^{2}  +  {5}^{2} }  \\  =  \sqrt{144 + 25}  =  \sqrt{169}  = 13 \\ so \: all \: the \: trigonometric \: eqs \: are \\  \sin( \alpha )  =  \frac{p}{h}  =  \frac{5}{13}  \\  \cos( \alpha )  =  \frac{b}{h}  =  \frac{12}{13}  \\  \tan( \alpha )  =  \frac{p}{b}  =  \frac{5}{12}  \\  \cot( \alpha )  =  \frac{b}{p}  =  \frac{12}{5}  \\  \sec( \alpha )  =  \frac{h}{b}  =  \frac{13}{12}  \\  \csc( \alpha )  =  \frac{h}{p}  =  \frac{13}{5}

Similar questions