Math, asked by ywkmaa, 1 year ago

In a triangle ABC, write cos(B+C/2) in terms of angle A.

Plzzzzz help me.....

100 points...

Answers

Answered by Divyaalia
17
Hey mate, here is your answer -:)

___________________________

Since, A + B + C=180 \\ \: \: \: \: \: \: \: \: Hence, B + C = 180 - A \\ \\ cos( \frac{B + C}{2} ) = cos( \frac{180 - A}{2} ) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = cos(90 - \frac{A}{2} ) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = sin \frac{A}{2}

__________________________

HOPE it helps to you!!
Answered by Ashishkumar098
9

<b > Answer :-




____________________________




Given :-



ABC is a triangle.




To write :-



cos { ( B + C ) / 2 } in terms of angle A.




Salutation :-




As a triangle , angle A + B + C = 180°



Then , B + C = 180° - A



Now ,



cos { ( B + C ) / 2 }.        [ • Putting the value of ( B + C ) ]



= cos { ( 180° - A ) / 2 }



= cos { 180° / 2 - A / 2 }



= cos ( 90° - A / 2 )



= sin A / 2                [ ★ Required answer ]



[ • As we know , cos ( 90° - ∅ ) = sin∅ ]





______________________________

Similar questions